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FACTOR ANALYSISOF MULTILEVEL DATA.
GAUGING THE MUTHEN MODEL.
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University of Amsterdam

Abstract

Socia data often have ahierarchica sructure. A familiar exampleis educationa research data, with
their distinct pupil, class and school levels. In the most generd case there are variables defined at
each level, and the variable set may be different at the different levels.

Even if dl variables are measured at the lowest leve, the clustering in the data leads to
problems, because the usud assumptions of independently and identicaly distributed varigbles are
not met. Muthén has described an approximate mode for factor andyss and path analysis with
hierarchica data. This chapter presents amodd for factor analysis of hierarchica data proposed by
Harnqvist and the moded proposed by Muthén mode. The accuracy of the gpproximation of the
Muthén modd is assessed by gauging.

1. Introduction

Socia science often studies systems that possess a hierarchica structure. Naturaly, such systems
can be observed a different hierarchica levels. Familiar examples are the educationa system, with
its hierarchy of pupils within classes within schools, families, with family members within families,
and other socid structures where individuals are grouped in larger organizational or geographical
groups. As a conseguence the data can be regarded as a multistage or cluster sample from different
hierarchicd levels. In the most general case, there are not only variables at separate levels, but there
may be different sets of variables a the separate levels.

*| thank Edith de Leeuw, Bengt Muthén, and two anonymous reviewers for their comments on earlier
versions, Arie van Peet for his permission to use his data, and Jost Reinecke for helpful comments on
the Lisrel-implementation. Special thanks are due to Bengt Muthén for his permission to participate in
one of his stimulating graduate seminars at UCLA.
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Even if the andyss includes only variables a the lowest (individud) level, standard
multivariate models are not appropriate here. The hierarchica structure of the population, which is
reflected in the sample data, creates problems, because the standard assumption of independent and
identically distributed observations (i.i.d.) is most probably not true. Multilevel analysis techniques
have aready been developed for the hierarchica linear regresson model, and specialized software
is now widdy avalable (cf. Mason, Wong & Entwide, 1984; De Leeuw & Kreft, 1986;
Raudenbush & Bryk, 1986; Longford, 1987; Goldstein, 1987). The more genera case of multilevel
andysis of covariance structure models has been discussed by, among others, Goldstein and
McDonald (1988), Muthén and Satorra (1989), and Muthén (1989, 1990). The approach by
Muthén (1990) is particularly interesting, because many models can be andyzed with available
covariance structure analysis software (such as Lisrd, Liscomp, EQS).

This chapter concentrates on the two-level factor anayss mode, which assumes that we
have a number of variables, measured at the lowest (individua) level, and want to determine and/or
compare the factor structure at both levels. The first modd discussed is a decomposition model
proposed by Harngvigt (1978). The next mode is the confirmative factor anadlysis model developed
by Muthén. Subsequently, the accuracy of the Muthén mode is gauged by applying it to a
two-level data set with a known multilevel factor sructure. The discusson provides some
suggestions for the anadysis of more genera models.

2. TheHarnqvist M odel

Harnqvist (1978) proposes to use Cronbach and Webb's (1975) decomposition of the observed
total scores at the individua level Yt into a between group component Ys, which equd the
disaggregated group means, and a within group component Yw, which equa the individud
deviations from the corresponding group means. This leads to additive and orthogonal scores for
the two levels (cf. Cronbach & Webb, 1975). Thus, at the individua score level we have

Yr=Ys+Yw 2,
while for the sample covariance matrix S(Y) we have
S =%+ Sy 2.

Harnqvist recommends to scale both matrices Sg and Sw by dividing each ement by the product
of the standard deviations of the total scores. This results in two covariance matrices Rs and Rw,
which are orthogona and sum to the sample correlation matrix for the total scores Ry. The matrices
Rs and Rw are analyzed with standard component or explorative factor analyss techniques. (As an
added refinement, Harnqvist recommends to use the proportion of variance at each level as the
commundity estimate.)

Harnqvig's decomposition mode provides a straightforward technique to explore the
sample factor structure at two (or more) levels. In addition, it is easy to run with well-known
software packages such as SPSS or SAS. It's main disadvantage is that it is purely explorative; it
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does not address problems of datistical estimation and inference. Muthén's approach, which is
discussed in the next section, is more generd, because it is designed to model multilevel population
structures by maximum likelihood estimation.

For gpplications of the Harnqvist decomposition model, see Harnquist (1978) and Hox &
Willemse (1985).

3. The Muthén Model

In Muthén's model specification, we assume sampling a two levels, with both between group
(group leve) and within group (individua level) covariation. Thus, in the population we can
distinguish the between group covariance matrix Sg and the within group covariance matrix Sw.
Muthén (1989, 1990) formulates between and within structural equation models for Sg and Sw,
and derives maximum likelihood procedures to fit these. The genera likelihood equation is very
complicated, but the likdihood for the confirmative factor analyss mode turns out to be
comparatively conventional (Muthén, 1990, 1991), which dlows us to andyze the confirmative
factor model using conventional software.

In the specid case of G balanced groups, with dl G group sizesequa to n, and total sample
gze N = Gxn, we can define two sample covariance matrices: the pooled within covariance matrix
S and the between covariance matrix Sg, which are given by:

Gn _ _
SS(Ys - Yy (Yo - Yo'
Sew = (3)
N- G
and
G —_— —_— —_— —_—
ns(Y- Yy (Y- Yy
Ss = (4).
G

In 3 and 4 Sew is the covariance matrix of the deviation scores, with denominator N-G instead of
N-1, and Ss is n times the covariance matrix of the group means, with G instead of the more
regular G-1 as the denominator. As Muthén (1989, 1990) shows, in the balanced case Sow is the
maximum likelihood estimator of Sw, with sample sze N-G, while S is the maximum likelihood
estimator of the composite Sw + ¢Sg, with sample size G and ¢ equa to the common group size n:

Sew = Sw o)

and
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Ss =Sw +CSs (6).

Equations 3 through 6 suggest using the multi-group option of conventiona covariance structure
anadyss software to carry out a smultaneous confirmative factor analysis at both levels.

A% Ax A=
Ty YEW YEW Y‘IEI YEEI YSEI
7 o 7 7
[equality
constrainks)
(ithin mode|) [ Bebrvesn model)

Figure 1. Single factor Within and Between hodel

For the within group structure, this requires that the same mode is specified for Sew and Sg, with
equality congraints across both groups. For the between group structure, a mode must be
specified which incorporates the constant ¢ as a scaling factor. Figure 1 below presents a Ligd
mode specification for three observed variables and a one-factor mode for both the within group
and between group structure. Note that the 'between group structure' is actually a composite of the
mode for Sw and the mode for Sg, with ascaling parameter for the latter.

The unbalanced case, with G groups of unequa sizes, is more complicated. In the unbaanced case,
S can be shown to be the ML estimator of Sw:

Sew = Sw (7)

but Ss now estimates a different expression for each separate group size d:
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Sed = Sw + CiSs (8),

where 8 holds for each set of groups with a distinct common group size equa to ng, and c=ng
(Muthén, 1990, 1992).

The Full Information Maximum Likelihood (FIML) solution for 8 is to specify as many
between-group models as there are distinct group sizes, with different scaling parameters ¢s and
equality congraints for the other parameters in the Between model.** This results in large and
complex covariance structure models. As a smplification, Muthén (1990, 1992) proposes to utilize
a partiad ML approach (Muthén's approximate ML solution, or MUML for short), by computing
one singe Sg following equation 4, and use an ad hoc estimator C* for the scaling parameter ¢
(usudly C* iscloseto the mean group size):

G
N2- S 7
Ct= — 9).
N (G-1)
For confirmative factor anayss modds, the FIML solution is exact, and MUML is an
gpproximation which should be reasonable if the distinct group Sizes ng are not too dissmilar.
Muthén (1990) presents some examples where the different approaches result in practicaly
identical parameter estimates and chi-square values. In the next section, a different gpproach is used
to gauge the accuracy of the MUML solution.

The decomposition model proposed by Harngvist has some similarity to the Muthén modéd. If the
group sizes are equal, the estimators Sw ) and Ss ) used by Harnqvist have a smple relationship
to the estimators Sw vy ahd Se v used by Muthén:

N-G N-G
Svey = —— Sewwm) = —— Sw (10),
N N
and
G G
S = " Sem) = T Sw+Se (11).
n n

Thus, the Harngvist estimator for Sw is off by a scae factor. If the number of groups G is smal
relative to the number of individual observations N, the gpproximation is good. If the correlation
matrix is andyzed instead of the covariance matrix, the Harngvist estimator is equd to the Muthén

** This modd could of course be generalized to modd different between- group factor structures for
groups of different sizes, but in my view this should only be attempted if there is a theoretical
judtification for this.
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estimator. Analyzing a scaed verson of Sw ) by explorative component analys's appears a useful
procedure for exploration.

The Harngvigt estimator for S dso differs by a scale factor from the Muthén estimator. As
Muthén (1989) has shown, such estimators confound the within group and between group
covariance. Again, if the number of groups G is smal compared to the number of observations N,
then the number of observations n in each group is large, and Ss ) will be a reasonable
approximation to Sg, especidly if the between group covariances are relaively large. All in dl, the
Harnqvist approach appears useful for exploration, especialy if the between group covariances are
large and the average group size is not small.

4. Gauging and the Gauge-model

Gauging is a process to probe the merits of a specific technique, by constructing a modd with
known properties, applying the technique, and studying how well the technique recovers the known
properties (cf. Gifi, 1990, p34). To gauge the MUML solution, data were generated from a known
factor modd, the Nine Psychologicd Variables example from the Lisrd 7 manuad (Joreskog &
Sorbom, 1989, p104). The population modd isgivenin Table 1 below:

Table1
Known Vaues Nine Variables Factor Model

Var: Factor Matrix (LX):  Unique Var. (TD)

1 708 498
2 483 767
3 649 578
4 .868 247
5 830 311
6 825 319
7 675 545
8 867 248
9 459 412 471
Factor Correlations (PH)
1.000
558 1.000
392 219 1.000
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Severd different two-level factor models were derived from the known factor model in Table 1. In
al cases, the parameters of the within group model were specified to be equa to the valuesin table
1. The between group model was specified to be equal to the within model, and then scaled to
produce three different two-levdl modds, with population intraclass correlations (rho) of the
observed variables equa to .25, .50, and .75. In other words. these three intraclass correations
specify population modelsin which the variance of the latent variables for the between group model
are 30%, 100%, and 300% of the variances of the corresponding latent variables in the within
group model. From the resulting three known factor models, three population correlation matrices
were derived for the nine observed variables. The raw scores were generated using the normal
digtribution. Four different sampling schemes were used with varying group sizes. a group sze
ranging from 3-9, that is intended to reflect gpplications such as family research, and a group size
ranging from 20-30, that isintended to reflect applications such as school research. The group sizes
were (gpproximately) uniformly distributed over the group size range. The four sampling schemes
are summarized in Table below 2:

Table 2
Sampling Schemes Used to Generate Data

N Ng Sizerange
300 50 39
600 100 39
1250 50 20-30
2500 100 20-30

Combining the three popul ation models characterized by intraclass correlations of .25, .50, and .70,
with the four sampling schemesin Table 2, produces 12 different data sets.

4.1 Recovery of Parameter Valuesby Muthén's partial ML solution

Figure 2 presents the two-factor model in Lisrd-notation in a unified form:
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Figure £, Gange Model {Within and Between Group Model)

In Figure 2, there are equality regtrictions for the within group modd across the two levels. The
between part of the model is fixed to zero in the within group. The scales of the latent variables are
fixed by standardization to a variance equa to one. Maximum likelihood estimation is used to
estimate the parameter vaues. To facilitate the comparison of solutions with different scalings for
the between-modd, al between group parameter estimates have been rescaled to the scale of the

origina mode in Table 1.

Table 3 below presents the results for the within group factor structure. For al analyses, Table 3
presents the mean value of the parameter bias (mean deviation of the parameters from ther true
vaues), and the Root Mean Square Deviation RMSD (root mean squared deviation of the
parameters from their true values):
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Table3
Recovery of Within Structure.

Rho=.25 Rho = .50 Rho=.75

bias RMSD bias RMSD bias RMSD
LX 300/50 01 .11 01 11 01 .11
600/100 -01 .05 -02 .05 -02 .05
1250/50 -02 .03 -02 .03 -02 .03
2500/100 -00 .02 -00 .02 -00 .00
PH 300/50 01 .01 01 .01 01 .01
600/100 -03 .03 -02 .03 -02 .03
1250/50 -03 .03 -03 .04 -03 o4
2500/100 -03 .03 -03 .03 -03 .03
TD 300/50 -03 .05 -03 .05 -03 .05
600/100 -02 .03 -02 .05 -02 .05
1250/50 -01 .02 -01 .02 -01 .02
2500/100 -00 .01 -01 .01 -00 .01

Table 3 shows that for the within group structure, the mean biasisin all cases rather smal. Asthe
RMSD vaues show, the deviation of a particular parameter can Hill be consderable. This is
especidly true for the factor loadings when the within group sample sze is comparatively small.
With large sample sizes (600 and up), the deviation of individud loadingsis aso rather small.

Table 4 below presents the results for the between group factor structure. For dl analyses, Table 4
presents the mean value of the parameter bias (mean deviation of the parameters from ther true
vaues), and the Root Mean Square Deviation RMSD (root mean squared deviation of the
parameters from their true values):
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Table4
Recovery of Between Structure
(rescaled to same scale as the original structure)

Rho=.25 Rho = .50 Rho=.75

bias RMSD bias RMSD bias RMSD
LX 300/50 02 .19 01 .11 01 .06
600/100 -.02 .08 -02 .05 -01 .03
1250/50 -03 .04 -02 .03 -01 .01
2500/100 -00 .04 -00 .02 -00 .01
PH 300/50 01 .01 01 .01 01 .01
600/100 -03 .03 -02 .03 -02 .03
1250/50 -03 .04 -03 .04 -03 o4
2500/100 -03 .03 -03 .03 -03 .03
TD 300/50 -.05 .08 -03 .05 -02 .03
600/100 -04 .06 -02 .05 -01 .03
1250/50 -01 .03 -01 .02 -01 .01
2500/100 -01 .02 -01 .01 -00 .01

Table 4 shows that the recovery of the between group Structure is not as good as the recovery of
the within group structure, especialy when the sample size is smdl and the intraclass corrdlation is
low. The RMSD for the between structure is generaly larger than for the within structure. A
comparison of the different sampling schemes shows that the problem lies not exclusively with the
lower effective between group sample size that results when groups are the units of observation.
Both for 50 and for 100 groups, the between group results become much more stable when the
within group sample sizes become larger. The explanation is that the between group mode
effectively mode s the covariances that are not explained by the common within group moded. Table
4 revedls the importance of obtaining a correct within groups model for the accuracy of the
between group parameter estimates.

Since the goa of the andyss is to separate the between group and within group effects, it is
interesting to see how well this procedure recovers the correct value of the intraclass correlation,
which is the population proportion of the between group variance. In the unbalanced Muthén
modd, thisisfor each variable estimated by theratio:
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(P - ) / C*
ICC = (12)
(Fo-Sw)/C* + Sw

Table 5 bdlow shows how well Muthén's approach recovers the known population intraclass
correlation (1CC):

Table5
Recovery of ICC by Muthén's Approach

Rho=.25 Rho = .50 Rho=.75

bias RMSD bias RMSD bias RMSD
LX 300/50 01 .06 01 .06 01 .04
600/100 03 .04 03 04 02 .03
1250/50 01 o4 02 .06 02 .04
2500/100 03 .04 03 .02 02 .03

While the estimates of the intraclass correlations are quite accurate, Table 5 suggests that they are
consistently too large, and that the size of the bias depends mostly on the number of groups. It is
interesting to note that if the more familiar procedure is followed to estimate the intraclass
correlations by aoneway anayss of variance, the results are very smilar:

Table 6
Recovery of ICC by Oneway Anaysis of Variance

Rho=.25 Rho = .50 Rho=.75

bias RMSD bias RMSD bias RMSD
LX 300/50 01 .06 02 .06 02 .04
600/100 03 .04 03 .05 03 .04
1250/50 02 .04 03 .06 03 .05
2500/100 03 .04 04 05 03 .03

Oneway andysis of variance estimates the ICC with dightly less accuracy than the more intricate
Muthén approach.
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As figure 1 and 2 show, the c* is bascdly a scaling factor, and its accuracy is only very
important if the goa of the analysisis to compare different between group structures, e.g., for small
versus large groups.

5. An Empirical Example

The data of this example andysis sem from the dissertation study of Van Peet (1992). The
example data are the scores of 187 children from 37 large families (an average of 5 children in each
family) on 6 subtests of the Groninger Intelligence Test (GIT). The subtests are: wordlist, laying
cards, matrices, hidden figures, naming animals, and naming occupations. The data form a
hierarchical structure, with children nested within families. Since intelligence generdly shows strong
effects of shared hereditary and environmental factors, strong family effects are to be expected. The
scores on the subtests have been decomposed into group level and individua level varigbles after
Cronbach and Webb (1975) (cf. equations 1 and 2). The mean and variances of the subtests at the
separate levels are given in Table 7 below.

Table7
Mean, Variances at Separate Levels,
and Intra Class Corrélations (ICC) for Family Data

Tota Family Indiv.
Subtest Mean Var. Var. Var. ICC
word list 2980 1521 7.48 7.73 37
cards 3268 2847 13.65 14.82 35
matrices 31.73 16.38 524 11.14 A5
hidden figs. 2711 2123 6.84 14.38 16
lig animds 2865 2282 8.46 14.36 22
list occup. 2828 2142 9.11 12.31 .28

It is clear that there is considerable family level variance. To anayze the factor structure of the six
subtests a within family covariance matrix Sw and a between family covariance matrix Sg were
computed following Muthén's approach given in equations 3 and 4.

The first step in the analysis is to modd the within family covariance matrix. To obtain
some information on the factor structure of the within family model, a component analysis was
performed on the correlation matrix of the individua deviation scores (this is equivaent to
Harngvist's agpproach, and can easly be performed using a standard datistics package such as
SPSS). The exploratory andlysis a two-factor structure for the within family matrix, with the first
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three variables |oading on the first factor, and the last three variables loading on the second factor.
To check this exploratory andlyss, a confirmatory factor anaysis was performed on the within
family covariance matrix. A mode with al variables loading on one genera factor was rejected
(chi-sguared=44.87, df=9, p=.00), while a two factor mode with the first three variables loading
the first factor and the last three variables loading the second factor was accepted (chi-
quared=7.21, df=8, p=.51).

The two-factor model was used as the starting point for the multilevel factor andysis. Asa
firdt step, two models were analyzed using the multigroup specification proposed by Muthén. In
both models, the two-factor model found above is specified for both the within family covariance
matrix Sw and the between family covariance matrix Sg, with appropriate equality restrictions. In
addition, the firs model estimates in the between family matrix Sg an unrestricted between family
model, by estimating al covariances between the between family factors that represent the between
family parts of the observed variables (in other words: no restrictions are placed on that part of the
matrix Ps). This is the maximal model: it places no redtrictions on the between family structure,
and estimates the within model using the information in both the within family covariance matrix Sw
and the between family covariance matrix Sg. The second model is the minimal model: it contains
no between family model, and again estimates the within mode using the information in both the
within family covariance matrix Sy and the between family covariance matrix Sg. The minimd
mode, in fact, assumes that in the population the between family covariance matrix Sg is zero.
Since the within part of the model holds in an analysis of Sw only, it is to be expected that the
maxima mode will be accepted in the multigroup andlyss as well. And, since Table 7 shows the
amount of between family variation to be large, it is to be expected that the minima moded will be
rgjected. As a first gpproach to modeling the between structure two models are examined that lie
between the extremes of the minima and the maxima modd: afirg that specifies one single generd
factor for the between family model, and a second that specifies atwo factor structure smilar to the
two factors in the within modd.

Table 8 below gives the results for the minima and the maxima model, together with the
results of the one- and two-factor mode!:

Table8
Comparison of Three Between Family Models

Between family mode Chi-squared  df p

Minima modd 12541 29 .00
One factor modd 21.28 17 21
Two factor modd 20.06 16 22
Maxima modd 7.21 8 51
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The minima model, which specifies no between modd, is rgjected. The maxima mode is accepted;
its parameter estimates for the within factor structure are very close to the estimates obtained by
andyzing only the within covariance matrix.

The onefactor modd has a satisfactory fit. The fit of the two-factor modd is not
sgnificantly better than the fit of the one-factor model. It seems that a one factor configuration for
the between part of the modd is sufficient.

Table 9 below shows the parameter estimates for the one-factor modd. For the purpose of
interpretation, al parameters have been standardized to a common metric for both the within and
the between part of the modd.

Table9
Within and Between Model, Standardized Factor Loadings

Within Between
word list .30* .84*
cards 52 .78
matrices .70 1.02
hidden figs. .30 .58
list animals .70 86"
list occup. A8* 33

Corréelation between the two within factors; 0.22™

* = fixed parameter; ns = not significant

Table 9 suggests that at the family leve, that shows the effect of shared hereditary and
environmentd influences, a single generd (g) factor explains the covariances. At the individua
level, that shows the effect of idiosyncratic influences, the hypothesis of a sngle factor is clearly
regjected in favor of adifferentiation into two different factors.

6. Discussion

The results from the gauging analyss suggest that the partid maximum likelihood (MUML)
multilevel confirmatory factor anadysis model proposed by Muthén performs very well. When the
effective within group sample size is above the lower limit (at least 200) suggested by Boomsma
(1983), even with small effective sample sizes at the group level (50 and 100 in our gauging
example), the results may turn out perfectly acceptable. The empirical example, which especidly for
the between family sample of 37 fals far below this limit, aso gives results that appear quite
acceptable.
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The Muthén mode, whether the Full Information Maximum Likelihood (FIML) or the smplified
(MUML) modd, is consderably more complex than the Harnqvist model. It is complex to set up,
and it does not belong to the set of models for which programs like Lisrel can caculate starting
vaues, s0 these must be supplied to the program. Experience has shown that one needs good
garting vaues to alow the program to start the Maximum Likelihood iterations. In the example
given above, it was pointed out that the between group modd essentially models the covariances
that are not explained by the common within group model. Thus, to obtain good estimates for the
between group mode, it is important to have a correct within group model. In the gauge example,
the structure of the within group modd is known. In a red world andysis, this is not the case.
Muthén (1990) advises to start the model search by andyzing the totd (raw) score covariance
matrix Sr or, preferably, the pooled within covariance matrix Sew, for a first approximation.
However, if the between group covariances are large, Sr will be quite confounded. Given the good
recovery of the within group structure in Table 3, it appears more practical to start with an analysis
of the pooled within covariance matrix Sew, either in a separate explorative analys's, aswas donein
the empirica example given above, or in a two group analyss together with the between group
covariance matrix Sg, using an unrestricted between group mode, which has the advantage of
using al the available information about the within group structure.

After a satisfactory within group mode has been found, one can search for a between
group model using a variety of approaches. Muthén (1989, 1990) gives some guidelines, using the
framework of covariance dructure andysis. Since the between group covariance matrix Ss
confounds Sg and Sw, an explorative factor analysis directly on Sg is not an attractive option.
However, it is possble to model only a within structure in a two group model, and apply
explorative factor analyss to the estimated covariance matrix for the between group variables.
Another possihility isto use equations 5 and 6 to correct the between group covariance matrix:

* Ss- Sow
S = — (13)
C

However, S5 need not be positive definite, and both approaches appear to lead to unstable
estimates. Still, as a pragmatic approach to identifying the between group structure, an explorative
anadysis of ether estimate of the between group matrix may be appropriate.

The Muthén modd, including the MUML simplification, can be generalized to include severd types
of linear structurd models (see Muthén, 1989, 1990). If there are variables that are measured on
the group level, but not at the individua level, the models become more complicated. Basically, the
absence of the group level variables at the individua leve is trested as a missing data problem (cf.
Joreskog & Sorbom, 1989, p258; Bollen, 1989, p370). However, if factor means are included in
the model, the Muthén approach (both FIML and MUML) is probably less accurate (Muthén,
1989), and the conventiond covariance structure andysis software may pose some technica
problems (Muthén, 1990).

155



References

Ballen, K.A. (1989). Sructural Equationswith Latent Variables. New Y ork: Wiley.

Boomsama, A. (1983). On the Robustness of LISREL (Maximum Likelihood Estimation) against
Small Sample Sze and Nonnormality. Amsterdam: Sociometric  Research
Foundation.

Cronbach, L.J. & Webb, N. (1975). Between-class and within-class effects in a reported aptitude x
treatment interaction: Re- andyss of a sudy by G.L. Anderson. Journal of
Educational Psychology, 67, 717-724.

DelLeeuw, J. & Kreft, Ita G.G, (1986). Random coefficient models. Journal of Educational
Satistics, 11, 1, 55-85.

Gifi, A. (1990). Nonlinear Multivariate Analysis. New York: Wiley.

Hangvigt, K. (1978). Primary mentd &bilities a collective and individud levels. Journal of
Educational Psychology, 70, 706- 716.

Goldgtein, H. (1987). Multilevel modelsin educational and social research. London: Griffin.

Goldgtein, H. & McDonad, R. (1988). A generd modd for the andyss of multilevel data
Psychometrika, 53, 455-467.

Hox, JJ. & Willemse, J. (1985). De empirische samenhang van sociometrische scores; een andyse
op twee niveau's. Tijdschrift voor Onderwijsresearch, 10, 82-85.

Joreskog, K.G. & Sorbom, D. (1989). LISREL 7. A Guide to the Program and Applications.
Chicago: SPSSInc.

Longford, N.T. (1987). A fast scoring agorithm for maximum likelihood estimation in unbal anced
mixed modes with nested random effects. Biometrika, 74, 817-827.

Mason, W.M., Wong, G.M. & Entwide, B. (1984). Contextuad analyss through the multilevel
liner modd. In S. Leinhard (ed.). Sociological Methodology, 1983-84. San
Francisco: Jossey-Bass.

Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54,
557-585.

Muthén, B. (1990). Means and Covariance Sructure Analysis of Hierarchical Data. Los Angdles.
UCLA Statigtics series, #62.

Muthén, B. (1991). Multilevel factor Analysis of Class and Student Achievement Components.
Journal of Educational Measurement, 28, 338-354.

Muthén, B. & Satorra, A. (1989). Multilevel aspects of varying parameters in structurd models. In
R.D. Bock (ed.) Multilevel analysis of educational data. San Diego: Academic
Press.

Raudenbush, SW. & Bryk, A.S. (1986). A hierarchicd mode for studying school effects.
Sociology of Education, 59, 1-17.

Van Peet, A AJ. (1992). De Potentiedtheorie van Intelligentie. (The Potentidity Theory of
Intelligence). University of Amsterdam, dissertation.

156



