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Abstract

Social data often have a hierarchical structure. A familiar example is educational research data, with
their distinct pupil, class and school levels. In the most general case there are variables defined at
each level, and the variable set may be different at the different levels.

Even if all variables are measured at the lowest level, the clustering in the data leads to
problems, because the usual assumptions of independently and identically distributed variables are
not met. Muthén has described an approximate model for factor analysis and path analysis with
hierarchical data. This chapter presents a model for factor analysis of hierarchical data proposed by
Härnqvist and the model proposed by Muthén model. The accuracy of the approximation of the
Muthén model is assessed by gauging.

1. Introduction

Social science often studies systems that possess a hierarchical structure. Naturally, such systems
can be observed at different hierarchical levels. Familiar examples are the educational system, with
its hierarchy of pupils within classes within schools, families, with family members within families,
and other social structures where individuals are grouped in larger organizational or geographical
groups. As a consequence the data can be regarded as a multistage or cluster sample from different
hierarchical levels. In the most general case, there are not only variables at separate levels, but there
may be different sets of variables at the separate levels.

*I thank Edith de Leeuw, Bengt Muthén, and two anonymous reviewers for their comments on earlier
versions, Arie van Peet for his permission to use his data, and Jost Reinecke for helpful comments on
the Lisrel-implementation. Special thanks are due to Bengt Muthén for his permission to participate in
one of his stimulating graduate seminars at UCLA.
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Even if the analysis includes only variables at the lowest (individual) level, standard
multivariate models are not appropriate here. The hierarchical structure of the population, which is
reflected in the sample data, creates problems, because the standard assumption of independent and
identically distributed observations (i.i.d.) is most probably not true. Multilevel analysis techniques
have already been developed for the hierarchical linear regression model, and specialized software
is now widely available (cf. Mason, Wong & Entwisle, 1984; De Leeuw & Kreft, 1986;
Raudenbush & Bryk, 1986; Longford, 1987; Goldstein, 1987). The more general case of multilevel
analysis of covariance structure models has been discussed by, among others, Goldstein and
McDonald (1988), Muthén and Satorra (1989), and Muthén (1989, 1990). The approach by
Muthén (1990) is particularly interesting, because many models can be analyzed with available
covariance structure analysis software (such as Lisrel, Liscomp, EQS).

This chapter concentrates on the two-level factor analysis model, which assumes that we
have a number of variables, measured at the lowest (individual) level, and want to determine and/or
compare the factor structure at both levels. The first model discussed is a decomposition model
proposed by Härnqvist (1978). The next model is the confirmative factor analysis model developed
by Muthén. Subsequently, the accuracy of the Muthén model is gauged by applying it to a
two-level data set with a known multilevel factor structure. The discussion provides some
suggestions for the analysis of more general models.

2. The Härnqvist Model

Härnqvist (1978) proposes to use Cronbach and Webb's (1975) decomposition of the observed
total scores at the individual level YT into a between group component YB, which equal the
disaggregated group means, and a within group component YW, which equal the individual
deviations from the corresponding group means. This leads to additive and orthogonal scores for
the two levels (cf. Cronbach & Webb, 1975). Thus, at the individual score level we have

YT = YB + YW (1),

while for the sample covariance matrix S(Y) we have

ST = SB + SW (2).

Härnqvist recommends to scale both matrices SB and SW by dividing each element by the product
of the standard deviations of the total scores. This results in two covariance matrices RB and RW,
which are orthogonal and sum to the sample correlation matrix for the total scores RT. The matrices
RB and RW are analyzed with standard component or explorative factor analysis techniques. (As an
added refinement, Härnqvist recommends to use the proportion of variance at each level as the
communality estimate.)

Härnqvist's decomposition model provides a straightforward technique to explore the
sample factor structure at two (or more) levels. In addition, it is easy to run with well-known
software packages such as SPSS or SAS. It's main disadvantage is that it is purely explorative; it



143

does not address problems of statistical estimation and inference. Muthén's approach, which is
discussed in the next section, is more general, because it is designed to model multilevel population
structures by maximum likelihood estimation.

For applications of the Härnqvist decomposition model, see Härnqvist (1978) and Hox &
Willemse (1985).

3. The Muthén Model

In Muthén's model specification, we assume sampling at two levels, with both between group
(group level) and within group (individual level) covariation. Thus, in the population we can
distinguish the between group covariance matrix ΣΣB and the within group covariance matrix ΣΣW.
Muthén (1989, 1990) formulates between and within structural equation models for ΣΣB and ΣΣW,
and derives maximum likelihood procedures to fit these. The general likelihood equation is very
complicated, but the likelihood for the confirmative factor analysis model turns out to be
comparatively conventional (Muthén, 1990, 1991), which allows us to analyze the confirmative
factor model using conventional software.

In the special case of G balanced groups, with all G group sizes equal to n, and total sample
size N = Gxn, we can define two sample covariance matrices: the pooled within covariance matrix
SPW and the between covariance matrix SB, which are given by:

       G n        _         _
       Σ Σ (Ygi - Yg) (Ygi - Yg)'
SPW = ___________________________ (3)
              N - G

and

       G  _       _         _        _
     n Σ (Y - Yg) (Y - Yg)'
SB = _______________________ (4).
                G

In 3 and 4 SPW is the covariance matrix of the deviation scores, with denominator N-G instead of
N-1, and SB is n times the covariance matrix of the group means, with G instead of the more
regular G-1 as the denominator. As Muthén (1989, 1990) shows, in the balanced case SPW is the
maximum likelihood estimator of ΣΣW, with sample size N-G, while SB is the maximum likelihood
estimator of the composite ΣΣW + cΣΣB, with sample size G and c equal to the common group size n:

SPW = ΣΣW (5)

and
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SB = ΣΣW + cΣΣB (6).

Equations 3 through 6 suggest using the multi-group option of conventional covariance structure
analysis software to carry out a simultaneous confirmative factor analysis at both levels.

For the within group structure, this requires that the same model is specified for SPW and SB, with
equality constraints across both groups. For the between group structure, a model must be
specified which incorporates the constant c as a scaling factor. Figure 1 below presents a Lisrel
model specification for three observed variables and a one-factor model for both the within group
and between group structure. Note that the 'between group structure' is actually a composite of the
model for ΣΣW and the model for ΣΣB, with a scaling parameter for the latter. 

The unbalanced case, with G groups of unequal sizes, is more complicated. In the unbalanced case,
SPW can be shown to be the ML estimator of ΣΣW:

SPW = ΣΣW (7)

but SB now estimates a different expression for each separate group size d:
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SBd = ΣΣW + cdΣΣB (8),

where 8 holds for each set of groups with a distinct common group size equal to nd, and cd=nd

(Muthén, 1990, 1992).
The Full Information Maximum Likelihood (FIML) solution for 8 is to specify as many

between-group models as there are distinct group sizes, with different scaling parameters cd and
equality constraints for the other parameters in the Between model.** This results in large and
complex covariance structure models. As a simplification, Muthén (1990, 1992) proposes to utilize
a partial ML approach (Muthén's approximate ML solution, or MUML for short), by computing
one singe SB following equation 4, and use an ad hoc estimator C* for the scaling parameter c
(usually C* is close to the mean group size):

G
N² - Σ n²g

C* =  ____________ (9).
  N (G-1)

For confirmative factor analysis models, the FIML solution is exact, and MUML is an
approximation which should be reasonable if the distinct group sizes ng are not too dissimilar.
Muthén (1990) presents some examples where the different approaches result in practically
identical parameter estimates and chi-square values. In the next section, a different approach is used
to gauge the accuracy of the MUML solution.

The decomposition model proposed by Härnqvist has some similarity to the Muthén model. If the
group sizes are equal, the estimators SW (H) and SB (H) used by Härnqvist have a simple relationship
to the estimators SW (M) and SB (M) used by Muthén:

    N-G        N-G
SW(H)  =   ________ SPW(M)  =  _________  ΣΣW (10),

      N          N

and

  G G
SB(H)  =  ____ SB(M)  =      ___  ΣΣW + ΣΣB (11).

   n  n

Thus, the Härnqvist estimator for SW is off by a scale factor. If the number of groups G is small
relative to the number of individual observations N, the approximation is good. If the correlation
matrix is analyzed instead of the covariance matrix, the Härnqvist estimator is equal to the Muthén

**. This model could of course be generalized to model different between- group factor structures for
groups of different sizes, but in my view this should only be attempted if there is a theoretical
justification for this.
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estimator. Analyzing a scaled version of SW (H) by explorative component analysis appears a useful
procedure for exploration.

The Härnqvist estimator for SB also differs by a scale factor from the Muthén estimator. As
Muthén (1989) has shown, such estimators confound the within group and between group
covariance. Again, if the number of groups G is small compared to the number of observations N,
then the number of observations n in each group is large, and SB (H) will be a reasonable
approximation to ΣΣB, especially if the between group covariances are relatively large. All in all, the
Härnqvist approach appears useful for exploration, especially if the between group covariances are
large and the average group size is not small.

4. Gauging and the Gauge-model

Gauging is a process to probe the merits of a specific technique, by constructing a model with
known properties, applying the technique, and studying how well the technique recovers the known
properties (cf. Gifi, 1990, p34). To gauge the MUML solution, data were generated from a known
factor model, the Nine Psychological Variables example from the Lisrel 7 manual (Jöreskog &
Sörbom, 1989, p104). The population model is given in Table 1 below:

Table 1
Known Values Nine Variables Factor Model
=================================
Var: Factor Matrix (LX): Unique Var. (TD)
_______________________________

 1 .708 .498
 2 .483 .767
 3 .649 .578
 4 .868 .247
 5 .830 .311
 6 .825 .319
 7 .675 .545
 8 .867 .248
 9 .459 .412 .471
=================================
Factor Correlations (PH)
____________________________________

1.000
.558 1.000
.392 .219 1.000

____________________________________
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Several different two-level factor models were derived from the known factor model in Table 1. In
all cases, the parameters of the within group model were specified to be equal to the values in table
1. The between group model was specified to be equal to the within model, and then scaled to
produce three different two-level models, with population intraclass correlations (rho) of the
observed variables equal to .25, .50, and .75. In other words: these three intraclass correlations
specify population models in which the variance of the latent variables for the between group model
are 30%, 100%, and 300% of the variances of the corresponding latent variables in the within
group model. From the resulting three known factor models, three population correlation matrices
were derived for the nine observed variables. The raw scores were generated using the normal
distribution. Four different sampling schemes were used with varying group sizes: a group size
ranging from 3-9, that is intended to reflect applications such as family research, and a group size
ranging from 20-30, that is intended to reflect applications such as school research. The group sizes
were (approximately) uniformly distributed over the group size range. The four sampling schemes
are summarized in Table below 2:

Table 2
Sampling Schemes Used to Generate Data
===============================
N ng Size range
___________________________________

300 50 3-9
600 100 3-9

1250 50 20-30
2500 100 20-30
___________________________________

Combining the three population models characterized by intraclass correlations of .25, .50, and .70,
with the four sampling schemes in Table 2, produces 12 different data sets.

4.1 Recovery of Parameter Values by Muthén's partial ML solution

Figure 2 presents the two-factor model in Lisrel-notation in a unified form:
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In Figure 2, there are equality restrictions for the within group model across the two levels. The
between part of the model is fixed to zero in the within group. The scales of the latent variables are
fixed by standardization to a variance equal to one. Maximum likelihood estimation is used to
estimate the parameter values. To facilitate the comparison of solutions with different scalings for
the between-model, all between group parameter estimates have been rescaled to the scale of the
original model in Table 1.

Table 3 below presents the results for the within group factor structure. For all analyses, Table 3
presents the mean value of the parameter bias (mean deviation of the parameters from their true
values), and the Root Mean Square Deviation RMSD (root mean squared deviation of the
parameters from their true values):
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Table 3
Recovery of Within Structure.
======================================================

Rho = .25 Rho = .50 Rho = .75
bias   RMSD bias   RMSD bias   RMSD

_____________________________________________________________
LX 300/50 .01 .11 .01 .11 .01 .11
  600/100 -.01 .05 -.02 .05 -.02 .05
  1250/50 -.02 .03 -.02 .03 -.02 .03
 2500/100 -.00 .02 -.00 .02 -.00 .00
_____________________________________________________________
PH 300/50 .01 .01 .01 .01 .01 .01
  600/100 -.03 .03 -.02 .03 -.02 .03
  1250/50 -.03 .03 -.03 .04 -.03 .04
 2500/100 -.03 .03 -.03 .03 -.03 .03
___________________________________________________
TD 300/50 -.03 .05 -.03 .05 -.03 .05
  600/100 -.02 .03 -.02 .05 -.02 .05
  1250/50 -.01 .02 -.01 .02 -.01 .02
 2500/100 -.00 .01 -.01 .01 -.00 .01
___________________________________________________

Table 3 shows that for the within group structure, the mean bias is in all cases rather small. As the
RMSD values show, the deviation of a particular parameter can still be considerable. This is
especially true for the factor loadings when the within group sample size is comparatively small.
With large sample sizes (600 and up), the deviation of individual loadings is also rather small.

Table 4 below presents the results for the between group factor structure. For all analyses, Table 4
presents the mean value of the parameter bias (mean deviation of the parameters from their true
values), and the Root Mean Square Deviation RMSD (root mean squared deviation of the
parameters from their true values):
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Table 4
Recovery of Between Structure
(rescaled to same scale as the original structure)
====================================================

Rho = .25 Rho = .50 Rho = .75
bias   RMSD bias   RMSD bias   RMSD

_____________________________________________________________
LX 300/50 .02 .19 .01 .11 .01 .06
  600/100 -.02 .08 -.02 .05 -.01 .03
  1250/50 -.03 .04 -.02 .03 -.01 .01
 2500/100 -.00 .04 -.00 .02 -.00 .01
_____________________________________________________________
PH 300/50 .01 .01 .01 .01 .01 .01
  600/100 -.03 .03 -.02 .03 -.02 .03
  1250/50 -.03 .04 -.03 .04 -.03 .04
 2500/100 -.03 .03 -.03 .03 -.03 .03
_____________________________________________________________
TD 300/50 -.05 .08 -.03 .05 -.02 .03
  600/100 -.04 .06 -.02 .05 -.01 .03
  1250/50 -.01 .03 -.01 .02 -.01 .01
 2500/100 -.01 .02 -.01 .01 -.00 .01
_____________________________________________________________

Table 4 shows that the recovery of the between group structure is not as good as the recovery of
the within group structure, especially when the sample size is small and the intraclass correlation is
low. The RMSD for the between structure is generally larger than for the within structure. A
comparison of the different sampling schemes shows that the problem lies not exclusively with the
lower effective between group sample size that results when groups are the units of observation.
Both for 50 and for 100 groups, the between group results become much more stable when the
within group sample sizes become larger. The explanation is that the between group model
effectively models the covariances that are not explained by the common within group model. Table
4 reveals the importance of obtaining a correct within groups model for the accuracy of the
between group parameter estimates.

Since the goal of the analysis is to separate the between group and within group effects, it is
interesting to see how well this procedure recovers the correct value of the intraclass correlation,
which is the population proportion of the between group variance. In the unbalanced Muthén
model, this is for each variable estimated by the ratio:
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  (s²B - s²W) / c*
ICC = _____________ (12)

  (s²B - s²W) / c*  +  s²W

Table 5 below shows how well Muthén's approach recovers the known population intraclass
correlation (ICC):

Table 5
Recovery of ICC by Muthén's Approach
======================================================

Rho = .25 Rho = .50 Rho = .75
bias   RMSD bias   RMSD bias   RMSD

_____________________________________________________________
LX 300/50   .01 .06 .01     .06 .01     .04
  600/100 .03 .04 .03 .04 .02 .03
  1250/50 .01 .04 .02 .06 .02 .04
 2500/100 .03 .04 .03 .02 .02 .03
_____________________________________________________________

While the estimates of the intraclass correlations are quite accurate, Table 5 suggests that they are
consistently too large, and that the size of the bias depends mostly on the number of groups. It is
interesting to note that if the more familiar procedure is followed to estimate the intraclass
correlations by a oneway analysis of variance, the results are very similar:

Table 6
Recovery of ICC by Oneway Analysis of Variance
======================================================

Rho = .25 Rho = .50 Rho = .75
bias   RMSD bias   RMSD bias   RMSD

_____________________________________________________________
LX 300/50 .01 .06 .02 .06 .02 .04
  600/100 .03 .04 .03 .05 .03 .04
  1250/50 .02 .04 .03 .06 .03 .05
 2500/100 .03 .04 .04 .05 .03 .03
_____________________________________________________________

Oneway analysis of variance estimates the ICC with slightly less accuracy than the more intricate
Muthén approach.
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As figure 1 and 2 show, the c* is basically a scaling factor, and its accuracy is only very
important if the goal of the analysis is to compare different between group structures, e.g., for small
versus large groups.

5. An Empirical Example

The data of this example analysis stem from the dissertation study of Van Peet (1992). The
example data are the scores of 187 children from 37 large families (an average of 5 children in each
family) on 6 subtests of the Groninger Intelligence Test (GIT). The subtests are: wordlist, laying
cards, matrices, hidden figures, naming animals, and naming occupations. The data form a
hierarchical structure, with children nested within families. Since intelligence generally shows strong
effects of shared hereditary and environmental factors, strong family effects are to be expected. The
scores on the subtests have been decomposed into group level and individual level variables after
Cronbach and Webb (1975) (cf. equations 1 and 2). The mean and variances of the subtests at the
separate levels are given in Table 7 below.

Table 7
Mean, Variances at Separate Levels,
and Intra Class Correlations (ICC) for Family Data

================================================
Total Family Indiv.
__________ _____ _____ ____

Subtest Mean Var. Var. Var. ICC

word list 29.80 15.21 7.48 7.73 .37
cards 32.68 28.47 13.65 14.82 .35
matrices 31.73 16.38 5.24 11.14 .15
hidden figs. 27.11 21.23 6.84 14.38 .16
list animals 28.65 22.82 8.46 14.36 .22
list occup. 28.28 21.42 9.11 12.31 .28
________________________________________________________

It is clear that there is considerable family level variance. To analyze the factor structure of the six
subtests a within family covariance matrix SW and a between family covariance matrix SB were
computed following Muthén's approach given in equations 3 and 4.

The first step in the analysis is to model the within family covariance matrix. To obtain
some information on the factor structure of the within family model, a component analysis was
performed on the correlation matrix of the individual deviation scores (this is equivalent to
Härnqvist's approach, and can easily be performed using a standard statistics package such as
SPSS). The exploratory analysis a two-factor structure for the within family matrix, with the first
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three variables loading on the first factor, and the last three variables loading on the second factor.
To check this exploratory analysis, a confirmatory factor analysis was performed on the within
family covariance matrix. A model with all variables loading on one general factor was rejected
(chi-squared=44.87, df=9, p=.00), while a two factor model with the first three variables loading
the first factor and the last three variables loading the second factor was accepted (chi-
squared=7.21, df=8, p=.51).

The two-factor model was used as the starting point for the multilevel factor analysis. As a
first step, two models were analyzed using the multigroup specification proposed by Muthén. In
both models, the two-factor model found above is specified for both the within family covariance
matrix SW and the between family covariance matrix SB, with appropriate equality restrictions. In
addition, the first model estimates in the between family matrix SB an unrestricted between family
model, by estimating all covariances between the between family factors that represent the between
family parts of the observed variables (in other words: no restrictions are placed on that part of the
matrix Psi). This is the maximal model: it places no restrictions on the between family structure,
and estimates the within model using the information in both the within family covariance matrix SW

and the between family covariance matrix SB. The second model is the minimal model: it contains
no between family model, and again estimates the within model using the information in both the
within family covariance matrix SW and the between family covariance matrix SB. The minimal
model, in fact, assumes that in the population the between family covariance matrix ΣΣB is zero.
Since the within part of the model holds in an analysis of SW only, it is to be expected that the
maximal model will be accepted in the multigroup analysis as well. And, since Table 7 shows the
amount of between family variation to be large, it is to be expected that the minimal model will be
rejected. As a first approach to modeling the between structure two models are examined that lie
between the extremes of the minimal and the maximal model: a first that specifies one single general
factor for the between family model, and a second that specifies a two factor structure similar to the
two factors in the within model.

Table 8 below gives the results for the minimal and the maximal model, together with the
results of the one- and two-factor model:

Table 8
Comparison of Three Between Family Models
=======================================
Between family model Chi-squared df p
____________________________________________
Minimal model 125.41 29 .00
One factor model 21.28 17 .21
Two factor model 20.06 16 .22
Maximal model 7.21 8 .51
____________________________________________
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The minimal model, which specifies no between model, is rejected. The maximal model is accepted;
its parameter estimates for the within factor structure are very close to the estimates obtained by
analyzing only the within covariance matrix.

The one-factor model has a satisfactory fit. The fit of the two-factor model is not
significantly better than the fit of the one-factor model. It seems that a one factor configuration for
the between part of the model is sufficient.

Table 9 below shows the parameter estimates for the one-factor model. For the purpose of
interpretation, all parameters have been standardized to a common metric for both the within and
the between part of the model.

Table 9
Within and Between Model, Standardized Factor Loadings

=============================================
Within Between

___________________________________________________
word list .30* .84*
cards .52 .78
matrices .70 1.02
hidden figs. .30 .58
list animals .70 .86ns

list occup. .48* .33
___________________________________________________
Correlation between the two within factors: 0.22ns

___________________________________________________
* = fixed parameter; ns = not significant

Table 9 suggests that at the family level, that shows the effect of shared hereditary and
environmental influences, a single general (g) factor explains the covariances. At the individual
level, that shows the effect of idiosyncratic influences, the hypothesis of a single factor is clearly
rejected in favor of a differentiation into two different factors.

6. Discussion

The results from the gauging analysis suggest that the partial maximum likelihood (MUML)
multilevel confirmatory factor analysis model proposed by Muthén performs very well. When the
effective within group sample size is above the lower limit (at least 200) suggested by Boomsma
(1983), even with small effective sample sizes at the group level (50 and 100 in our gauging
example), the results may turn out perfectly acceptable. The empirical example, which especially for
the between family sample of 37 falls far below this limit, also gives results that appear quite
acceptable.
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The Muthén model, whether the Full Information Maximum Likelihood (FIML) or the simplified
(MUML) model, is considerably more complex than the Härnqvist model. It is complex to set up,
and it does not belong to the set of models for which programs like Lisrel can calculate starting
values, so these must be supplied to the program. Experience has shown that one needs good
starting values to allow the program to start the Maximum Likelihood iterations. In the example
given above, it was pointed out that the between group model essentially models the covariances
that are not explained by the common within group model. Thus, to obtain good estimates for the
between group model, it is important to have a correct within group model. In the gauge example,
the structure of the within group model is known. In a real world analysis, this is not the case.
Muthén (1990) advises to start the model search by analyzing the total (raw) score covariance
matrix ST or, preferably, the pooled within covariance matrix SPW, for a first approximation.
However, if the between group covariances are large, ST will be quite confounded. Given the good
recovery of the within group structure in Table 3, it appears more practical to start with an analysis
of the pooled within covariance matrix SPW, either in a separate explorative analysis, as was done in
the empirical example given above, or in a two group analysis together with the between group
covariance matrix SB, using an unrestricted between group model, which has the advantage of
using all the available information about the within group structure.

After a satisfactory within group model has been found, one can search for a between
group model using a variety of approaches. Muthén (1989, 1990) gives some guidelines, using the
framework of covariance structure analysis. Since the between group covariance matrix SB

confounds ΣΣB and ΣΣW, an explorative factor analysis directly on SB is not an attractive option.
However, it is possible to model only a within structure in a two group model, and apply
explorative factor analysis to the estimated covariance matrix for the between group variables.
Another possibility is to use equations 5 and 6 to correct the between group covariance matrix:

SB - SPW

SB
*  =     ______________ (13)

    c

However, SB
* need not be positive definite, and both approaches appear to lead to unstable

estimates. Still, as a pragmatic approach to identifying the between group structure, an explorative
analysis of either estimate of the between group matrix may be appropriate.

The Muthén model, including the MUML simplification, can be generalized to include several types
of linear structural models (see Muthén, 1989, 1990). If there are variables that are measured on
the group level, but not at the individual level, the models become more complicated. Basically, the
absence of the group level variables at the individual level is treated as a missing data problem (cf.
Jöreskog & Sörbom, 1989, p258; Bollen, 1989, p370). However, if factor means are included in
the model, the Muthén approach (both FIML and MUML) is probably less accurate (Muthén,
1989), and the conventional covariance structure analysis software may pose some technical
problems (Muthén, 1990).
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