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Latent Class Analysis of Respondent Scalability
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Abstract. The psychometric literature contains many indices to detect aberrant respondents. A
different, promising approach is using ordered latent class analysis with the goal to distinguish latent
classes of respondents that are scalable, from latent classes of respondents that are not scalable (i.e.,
aberrant) according to the scaling model adopted. This article examines seven Latent Class models
for a cumulative scale. A simulation study was performed to study the efficacy of different models
for data that follow the scale model perfectly. A second simulation study was performed to study
how well these models detect aberrant respondents.
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1. Introduction

Four well-known sources of measurement error in surveys are the questionnaire
(e.g., question wording), the data collection mode (e.g., face to face or telephone
interviews), the interviewer, and the respondent (Groves, 1989). Unlike the first
three sources of measurement error (questionnaire, mode, interviewer), the fourth
error source (respondent) is difficult to minimize. Respondents can be instructed
in what is expected from them (e.g., think carefully, use the answer categories pro-
vided) and they may be motivated to do their best. But it is difficult to manipulate a
respondent to reduce the respondent error. Therefore, research on respondent errors
has concentrated on attempts to identify those respondents who produce errors and
search for their unique properties.

An important problem in this type of research is how to measure respondent er-
ror. Groves (1989: 445–446) summarizes this as follows: “Measurement errors are
generally viewed as specific to a particular measure, one question posed to the re-
spondent. Only by identifying response tendencies of respondents over many ques-
tions can inference about respondent influences on measurement error be made.
Then only by comparing different respondents on the same task can characteristics
of the respondents which produce measurement error be identified”.

One promising approach is the application of person fit indices to detect incon-
sistent respondents (Meijer and De Leeuw, 1993; Meijer, 1994; De Leeuw and Hox,
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1994). A very different approach is the application of ordered latent class analysis
with the goal to distinguish latent classes of respondents that are consistent in their
responses and latent classes of respondents that are not consistent (i.e., aberrant).
In both approaches, a psychometric scaling model (e.g., the Guttman model) serves
as a benchmark for aberrance. (See Forman, 1988, for a discussion of latent class
models for nonmonotone items).

In this paper, we investigate whether latent class analysis is a useful tool in the
study of respondent error. We start with a short evaluation of current approaches
in person fit research. This is followed by an overview of a number of latent class
models for Guttman type data (Section 3). To investigate how well these models
perform, we set up a simulation study which is described in Section 4. The simu-
lation study has two goals: (1) identifying models that provide a satisfactory fit to
a highly scalable but not perfect item set, and (2) that are capable of identifying
aberrant respondents in a second ‘polluted’ data set. We end with a discussion
of the effectiveness of ordered latent class analysis for the detection of aberrant
respondents (Section 5).

2. Person Fit Research

Person fit analysis investigates whether a person exhibits response behavior that
deviates from the behavior predicted by a measurement model, or from the re-
sponse behavior of the majority in the population to which that person belongs.
For example, if a student answers eight out of 10 questions correctly, one expects
that s/he will have missed the two most difficult questions. If the two easiest ques-
tions are answered incorrectly, this response pattern is completely unexpected. To
investigate response patterns, data are needed on a test or scale that consists of a
number of questions about the same topic (e.g., a test, an attitude or personality
scale). Furthermore, the test or scale should have good psychometric properties,
that is, a high reliability and good scalability.

For persons detected as aberrant, the total scale score does not adequately re-
flect the attribute that is measured. For instance, using person fit indices, Levine
and Rubin (1979) discuss person fit indices for the detection of cheating on apti-
tude tests. Harnisch and Linn (1981) use person fit indices to differentiate schools
with special curriculum on math and reading. Tatsuoka and Tatsuoka (1982, 1983)
identify students who use a wrong algorithm in problem solving tasks.

Although person fit indices have been developed in psychological and educa-
tional testing, applications can be found in sociology and survey research as well.
Van der Flier (1980) uses person fit indices in intercultural research, Van Tilburg
and De Leeuw (1991) apply person fit indices in a comparison of different data
collection methods, and Meijer and De Leeuw (1993) use person fit indices to
investigate aberrant respondents in a general survey.

Three groups of person fit indices can be distinguished. The first group is based
on the assumptions of parametric IRT-models, such as the Rasch model (c.f. Tarnai
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and Rost, 1990; Molenaar and Hoytink, 1990). The second group is based on a
nonparametric Item Response Theory model, such as the Mokken model (cf. Van
de Flier, 1980; Sijtsma, 1988). The third group evaluates a response pattern using
statistics based on the group to which a person belongs (e.g., proportion correct of
items, cf. Harnisch and Linn, 1981; Meijer, 1994.) Often, some kind of deviation
from the perfect Guttman pattern is used as a criterion for aberrance. Scales that
fit the strict assumptions of IRT-models such as the Rasch-model are scarce, espe-
cially in survey research. Consequently, nonparametric person fit indices are more
commonly used in empirical applications. One of these nonparametric person fit
indices, the index Q developed by Van der Flier (1980, 1982), will be used as a
benchmark in our simulation study in section 4.

Person fit indices have the advantage that they are easy to compute and can be
added simply to the original data files. They have two important drawbacks. First,
criteria for diagnosing aberrance are not clear. Sometimes rules of thumb exist
(cf. Harnisch and Linn, 1981); sometimes a statistical test is used (Van der Flier,
1980). Using a statistical test provides a formal criterion, but since many tests must
be performed (one for each respondent), this gives rise to the well-known type
I error. Even if there are no aberrant respondents, still a certain number will be
detected. Second, person fit indices divide respondents into two classes: ‘normal’
and ‘aberrant’, and they do not distinguish between different types of aberrant
respondents.

One interesting theoretical distinction that can be made, is the distinction be-
tween aberrant response patterns that are the result of a random response process,
and aberrant response patterns that are the result of a systematic but erroneous
response process. For instance, in educational research one often distinguishes
between ‘guessers and ‘cheaters’. When a student does not know the answer to
some difficult questions, s/he can either guess (a random response process), or
cheat by looking up the answers or looking at a neighbor’s answers (a systematic
response process). Both strategies may result in an aberrant response pattern, but
regular person fit indices do not distinguish between the two. With measures such
as attitude scales, ‘guessing’ could refer to respondents who answer without much
thinking about the precise content of the question, a phenomenon known in survey
methodology as the ‘top-of-the-head’ response. ‘Cheating’ could refer to respon-
dents that show unexpected response behavior on extreme questions, which can be
the result of a social desirability bias that shows up only on extreme questions. Be-
cause ‘guessing’ and ‘cheating’ most aptly refers to educational test data, we will
use the more general terms ‘random aberrant’ and ‘systematic aberrant’ response
patterns.

In the next section, we will present seven latent class models for cumulative
scales of the Guttman type, which allow additional latent classes for unscalable
respondents. In a simulation study, we will investigate how well these models fit
a well-behaved data set, and how well they distinguish random aberrant response
patterns (guessing) and systematic aberrant response patterns (cheating).
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3. Latent Class Models for Cumulative Scales

Latent class analysis has a long tradition in analyzing dichotomous responses with
a Guttman-type structure for the underlying scale (Lazarsfeld, 1950; Lazarsfeld
and Henry, 1968; Goodman, 1974; McCutcheon, 1987; Langeheine, 1988; Clogg,
1988). Different latent class models have been proposed for other IRT models,
such as the Rasch model (cf. Rost and Langeheine, 1997). In both approaches,
there may be unscalable respondents (Goodman, 1975; Clogg and Sawyer, 1981;
Rost, 1990), who in fact are respondents with aberrant response patterns according
to some restricted latent class model.

In this article, we confine ourselves to dichotomous probabilistic Guttman-type
data as exemplified by the Mokken model (Mokken, 1971), because validated
Rasch scales are rare in survey research. The Guttman cumulative scale model
assumes that we have dichotomous items that are scored ‘correct’ (c.q. positive,
yes) versus ‘incorrect’ (c.q. negative, no). The items can be ordered on an under-
lying dimension as to difficulty, and the respondents can be ordered on the same
underlying dimension as to ability. The original Guttman model is deterministic;
if a respondent encounters an item with a difficulty below the respondent’s ability,
the response will be correct with probability one. If a respondent encounters an
item with a difficulty above the respondent’s ability, the response will be incorrect
with probability one. The Mokken model adds a probabilistic component to the
Guttman cumulative scale (cf. Sijtsma, 1988).

The models we consider first are an elaboration of the deterministic Guttman
model in terms of latent class analysis. These models are probabilistic in the sense
that they estimate probabilities for specific responses, instead of assigning one of
the two possible responses with probability one. However, they are restrictive as
well, because they assume that respondents perfectly follow a cumulative scale.
Idiosyncratic response behavior can only be incorporated by assuming additional
latent classes for respondents that are unscalable. All these models are related to
Lazarsfeld’s latent distance model, and they are well known in the literature (Clogg
and Sawyer, 1981; McCutcheon, 1987; Langeheine, 1988; Heinen, 1993). Next, we
propose two new models that directly incorporate the possibility of unscalable re-
sponse behavior. These are mixed models, because they contain both a completely
deterministic part that represents the Guttman model, and a freely estimated part
that represents idiosyncratic response behavior. All models are briefly discussed
below.

The Latent Distance Model. The LAtent Distance (LAD) model developed by
Lazarsfeld (1950) is a general model that translates the deterministic Gutmann
model into a latent class model. The other models discussed here are derived from
the LAD by placing additional restrictions on the parameters of the LAD model.
With k items, the LAD has k + 1 latent classes, one for each possible score. In
the following, we will formulate models for a scale that consists of seven items;
the simulations presented later will also use a seven-item scale. The main ideas of
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Table I. The latent distance model (the LAD model)

Latent Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

classes

Class 1 a1 b1 d1 f1 h1 j1 m1

Class 2 a1 b1 d1 f1 h1 j1 1-m1

Class 3 a1 b1 d1 f1 h1 k1 1-m1

Class 4 a1 b1 d1 f1 i1 k1 1-m1

Class 5 a1 b1 d1 g1 i1 k1 1-m1

Class 6 a1 b1 e1 g1 i1 k1 1-m1

Class 7 a1 c1 e1 g1 i1 k1 1-m1

Class 8 1-a1 c1 e1 g1 i1 k1 1-m1

the LAD model are presented in Table 1. In Table 1, and in the subsequent tables
describing our models, the items are placed in their order of difficulty. Response
category 1 refers to the correct response, and response category 2 to the incorrect
response. Table 1 shows the conditional probabilities, given the latent class, of
observing a correct, or positive answer to each of seven dichotomous items that
are ordered from ‘easy’ to ‘difficult’. Cell (3,2), for example, contains the prob-
ability b1that someone who belongs to latent class 3 answers item 2 correctly.
The probability of observing an incorrect answer is 1-b1, which is not in the ta-
ble. The difference between these conditional probabilities and the corresponding
conditional probabilities of 1 and 0 in the deterministic Guttman scale is called the
‘error rate’. Thus, the error rate of cell (1,4) is 1-f1, because under the deterministic
Guttman model the probability in that cell is equal to one, and this error rate
indicates the false negatives. Likewise, the error rate of cell (8.4) is g1, because
under the perfect Guttman model this probability is equal to zero, and this error
rate indicates the false positives.

Characteristic of the LAD model is that the conditional probabilities for the
items 2 to 6 have the deterministic pattern. For each item, the probabilities are
restricted to be equal across the latent classes for the zeroes, respectively ones, in
the corresponding deterministic pattern. Exceptions are found at the end points of
the scale. To avoid identification problems, the error rates of items at the end points
must be set equal in each class (Lazarsfeld and Henry, 1968).

The Equal Item-Specific Error Rates Model. The Equal Item-Specific Error Rates
(EISER) model assumes equal error rates for each item across the classes (Lazars-
feld and Henry, 1968). This can be specified in the form of restrictions on the
probabilities for the LAD model in Table 1, by setting c1equal to 1-b1, e1 equal to
1-d1, and so on. Thus, the EISER model is more restricted than the LAD model.
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The Equal True-Type-Specific Error Rates Model. Imposing the restrictions of equal
error rates across the classes instead of the items, we obtain the Equal True-Type-
Specific Error Rates (ETTSER) model (Clogg and Sawyer, 1981). In class 1 of Ta-
ble 1 equal error rates are obtained by setting s1 equal to a1=b1=d1=f1=h1=j1=m1..
In class 2 we get the required restrictions by setting t1 equal to a1=b1=d1= f1=h1=j1
(which might have different values in other classes) and 1-t1 equal to 1-m1. In class
3 this is done by setting u1 equal to a1=b1=d1= f1=h1(which values might differ in
the other classes again) and 1-u1 equal to k1=1-m1. Continuing this way, we arrive
at class 8 which becomes the reverse of class 1.

The Proctor Model. In the Proctor model, named for the constraints suggested by
Proctor (1970), all error rates – cross the classes as well as across the items – are
assumed equal. In Table 1, this amounts to giving s1 the value of a1 = b1 = d1 = f1

= h1 = j1 = m1 (which now have equal values across the classes), and 1 − s1 the
value of 1 − a1 = c1 = e1 = g1 = i1 = k1 = 1 − m1.

To complement the deterministic models described above we propose two mixture
models, which combine a perfect Guttman pattern with measurement error, c.q.
response behavior that does not totally follow the cumulative Guttman model: the
‘Guttman with guessing model’ and the ‘diagonal model’.

The ‘Guttman With Guessing’ Model. The Guttman With Guessing (GWG) model
is based on two ideas. The first is Guttman’s original idea: if an item in a test
is less difficult than an item already answered correctly, then this item must also
be answered correctly (with probability 1). The second is that, if an item is more
difficult than the person’s ability to give a correct answer, then the person guesses
the correct answer.

Table 2 shows the restrictions the GWG model imposes on the conditional prob-
abilities. To guarantee that people with a higher capability than needed by the item
answer this item correctly, all conditional probabilities in the cells of the upper left
part of the table must be fixed at 1. All other cells (with symbol ∗) are left free;
these are estimated from the data.

The Diagonal Model. The DIAGonal model (DIAG) states that a person responds
correctly with probability 1 if his ability is much higher than the item difficulty.
If the ability is much lower than the item difficulty the answer is never correct
(in probabilistic terms: correct with probability 0). Random behavior will occur in
the turnover area from correct to incorrect. Table 3 shows how these restrictions
translate into conditional probabilities given the class to which one belongs. The
ideal pattern has one star only at the left-right ‘diagonal’ of the table. This model
is not identified, however. We need a ‘diagonal’ of size 4 in the classes 3 to 6 to
reach identification.
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Table II. Guttman with guessing (the GWG model)a

Latent Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

classes

Class 1 1 1 1 1 1 1 1

Class 2 1 1 1 1 1 1 ∗
Class 3 1 1 1 1 1 ∗ ∗
Class 4 1 1 1 1 ∗ ∗ ∗
Class 5 1 1 1 ∗ ∗ ∗ ∗
Class 6 1 1 ∗ ∗ ∗ ∗ ∗
Class 7 1 ∗ ∗ ∗ ∗ ∗ ∗
Class 8 ∗ ∗ ∗ ∗ ∗ ∗ ∗

a The symbol ∗ means no restriction on the probability of that cell.

Table III. Random behavior at the ‘diagonal’ (DIAG model)a

Latent Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

classes

Class 1 1 1 1 1 1 ∗ ∗
Class 2 1 1 1 1 ∗ ∗ ∗
Class 3 1 1 1 ∗ ∗ ∗ ∗
Class 4 1 1 ∗ ∗ ∗ ∗ 0

Class 5 1 ∗ ∗ ∗ ∗ 0 0

Class 6 ∗ ∗ ∗ ∗ 0 0 0

Class 7 ∗ ∗ ∗ 0 0 0 0

Class 8 ∗ ∗ 0 0 0 0 0

a The symbol ∗ means no restriction on the probability of that cell.

4. Two Simulation Studies

To classify aberrant respondents, we need latent class models that provide a good
fit of nearly perfect probabilistic Guttman scale data, otherwise it remains unclear
what response patterns are to be called aberrant. Therefore, we start with a sim-
ulation study to gauge how successful the various models are in fitting ‘good’
Guttman-type data. Next, we will examine how well models that fit Guttman-type
data are in detecting known aberrant respondents. Models that stand both these
tests are likely to detect aberrant response patterns in real data.

4.1. NORMAL DATA

In the first step, the models discussed in the previous section, with the addition
of the completely deterministic original Guttman (GUT) model, are used to ana-
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Table IV. Results with simulated nearly perfect Guttman dataa

Model Number of Chi d.f. Model Number of chi d.f.

classes square classes square

1. LAD 8 73 108 5. GUT 8 not identified

9 55 100 9 225 112

10 23 92 10 26 104

2. EISER 8 188 113 6. GWG 8 26 92

9 48 105 9 5 84

10 21 97 10 5 76

3. ETTSER 8 211 112 7. Diagonal 8 4 94

9 124 104 9 2 86

10 24 96 10 1 78

4. Proctor 8 224 119

9 167 111

10 26 103

a The chi square is the log-ratio chi square. Tail probabilities are left out.

lyze the scalability of seven items that form a nearly perfect Guttman scale. The
simulated data are generated from a two-parameter Birnbaum model with an item
discrimination parameter of 3.4 and equally spaced item difficulties ranging from
−2 to +2. This is identical to a Rasch scale model with discrimination parame-
ter 2. We assume the latent trait θ to have a standard normal distribution in the
population.

In total, 1500 cases have been generated in which 27 of the 128 (=27) different
response patterns showed up. Only 11.5% of the 1500 generated patterns was not
a perfect Guttman pattern: 9.2% showed one error (at the turnover point) and 2.3%
had two or more errors. The classical reliability estimate for this data is 0.73 (Cron-
bach’s alpha) and the scalability coefficient is 0.85 (Loevinger’s H). The number
of errors is small, so that each of the models of this section should be able to fit the
data with 8 latent classes (for the 7 stimuli). If they cannot, we consider them too
restrictive to deal with probabilistic Guttman data.1 Table 4 shows the results for all
the models by themselves, and with one, respectively two additional unrestricted
error classes.

Due to the many patterns with zero expected frequency, the log-ratio chi-squares
may not have a chi square distribution. Nevertheless, it seems clear that the latent
distance (LAD), the Guttman with Guessing (GWG), and the Diagonal (DIAG)
model are the true winners. The other models definitely need more then eight
classes to fit the data well. A second criterion to select the best fitting models
for these data is, whether the estimated class probabilities reproduce the relative
frequencies of the Guttman patterns in the original data. Here, the GWG model
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and the Diagonal model perform not as well as the latent distance model, which
follows the relative frequencies quite nicely. Therefore, the LAD model proves to
be the best fitting model for these nearly perfect Guttman data. So, this model will
be used to classify aberrant response patterns.

4.2. ABERRANT DATA

Using the LAD model, the next step is to investigate if latent class models can
detect random and systematic aberrant responders. We again use data generated
with the 2 parameter logistic model (Birnbaum, 1968). As before, the discrimina-
tion parameter is set at 3.4 for the seven items; the item difficulties are equidistant
in the interval [−2, +2]; and the trait θ is ∼ N(0, 1). But now we generate 1200
‘normal’ cases; 150 ‘random aberrants’ (with θ < 0, and p(Xi = 1) = 0.5 for all
items), and 150 systematic ‘aberrants’ (θ < 0, and p(Xi=1) =1 for item i = 6, 7).

In these aberrant data 107 from the 128 possible patterns showed up; 28.1%
of the 1500 cases did not have a perfect Guttman pattern, and 21.4% of the 1500
showed two or more errors. Compared with the normal data in the previous section,
these data are more lifelike. This is also true for the psychometric properties of the
aberrant data. Cronbach’s alpha is 0.54, and Loevinger’s H is 0.30; both indicate a
weak scale. These data are the benchmark for the latent distance model (LAD) for
Guttman-like data augmented with known aberrant respondents.

Table 5 presents the results of a number of latent class analyses with the latent
distance model. As expected, we need 10 classes to fit the data adequately. In Table
5, we have two models with 10 classes. In the first of these, class 9 and class 10 are
kept free. In the second, class 9 is reserved for the random aberrants and class 10 for
the systematic aberrants. Random aberrants in this analysis are modeled by having
the same probability of a correct answer for all items. Systematic aberrants are
modeled as having random behavior at the five easiest items (their probabilities are
left free), and answering correctly to the two most difficult items (with probability
1). The differences between the two models with 10 classes are small; both fit the
data well. However, the model with the restricted error classes is more informative,
because it provides specific information about the type of aberrance involved.

The fact that the LAD model with random and a systematic error class fits well
does not guarantee that the model classifies individual respondents correctly. To
investigate this, each of the 1500 simulated response patterns is assigned to the
class that has the highest recruitment probability. Next, we determine the propor-
tion normal and aberrant respondents that are classified correctly by the latent class
model. These classifications are also compared with the results obtained with a
classical psychometric approach, using Van der Flier’s Q (1980, 1982). Q is a
measure that indicates if a response pattern is aberrant. We set the significance
level for the detection of aberrant response patterns using Q at alpha = 0.10. Van
der Flier’s Q cannot distinguish between random and systematic aberrants.2
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Table V. Fit of the Latent distance model (LAD) for data with aberrant
respondentsa

Model Classes Chi square d.f.

LAD (8) 8 829 108

basic model

(9) 9 477 100

+ one class free

(10) 10 110 92

+two classes free

(11) 10 119 100

+random and systematic error

a The chi square is the log-ratio chi square.

Table VI. Classification errors of Van der
Flier’s Q and the latent distance model with
the aberrant dataset

Q LAD

False positives: 3% 0.003%

False neg. random Unknown 19%

False neg. system. Unknown 12%

False neg. total 13% 16%

Using Q on the normal data classifies 168 respondents as aberrants. Since all
respondents belong to the population of highly scalable respondents, the conclusion
is that Q produces 11% false positives for these data. Since the LAD model fits
these data successfully with 8 classes, no respondents are classified as aberrant,
meaning that there are 0% false positives. The correlation of the latent trait θ with
the classification scores from the latent distance model is 0.89. This is close to the
correlation of θ with the sum score of the items, which is 0.91.

With the aberrant dataset, Van der Flier’s Q classifies 41 of the 1200 ‘normal’
cases as aberrant, which leads to 3% false positives in Table 6. Of the 300 aber-
rant patterns, 39 are classified as normal (13% false negatives). Of the random
aberrants, 85% is classified correctly as aberrant by Van der Flier’s method; of the
systematic aberrants this is 89%. It is not possible, however, to distinguish between
random and systematic aberrants.

With the latent distance model, 4 of the 1200 patterns of ‘normals’ are called
aberrant (0.003% false positives). Of the 150 random aberrants, 29 are classified
as normal and the same holds true for 18 of the 150 systematic aberrants. In
Table 6 this leads to 12% and 19% false negatives respectively. Compared with
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Van der Flier’s Q, the model behaves quite reasonably with 16% false negatives
for all aberrants, and about zero percent false positives. Furthermore, 73% of all
random aberrants and 84% of all systematic aberrants are classified correctly. The
correlation of the ability θ with the latent distance classification score is 0.80. The
correlation of θ with the sum of the items (weighted by the LAD probability of
being ‘normal’) is even higher: 0.85. Taking in mind that the correlation with the
unweighted sum is 0.75, we may conclude that the latent distance model with extra
classes for cheaters and guessers adds information by modeling the errors.3

5. Discussion

Various models have been presented as possible models for response behavior on a
cumulative scale. The descriptions are in terms of cognitive items that can be right
or wrong. However, the models have an interpretation in terms of attitudinal items
as well. This is most clear in the probabilistic LAD model, and the models derived
from the LAD. There, persons differ in attitude and items differ in extremeness. The
response process follows this structure: extreme items are more difficult to agree
with, and only persons with an extreme attitude will agree to them. The mixed
models, the Guttman with guessing (GWG) and the diagonal (DIAG) model, are
interesting, because they embody a different theoretical response process. In the
GWS model, the response process for cognitive items is guessing when the items
become too difficult. Translated to attitude items, as long as we are positive about
a specific item we say yes with probability 1. However, if the items become more
extreme than our own point of view, we are going to hesitate and show a tendency
for random behavior. The DIAG model embodies another response process, which
specifies that persons have a deterministic response process when the items are
either very easy or very difficult, relative to their own position. Compared with the
GWG model this model has a clear interpretation for ordered attitudinal items. If
we are definitely positive about a specific item, we say ‘yes’ with probability 1 to
this item, and to the more ‘easy’ items. If we are unmistakably against, we do not
agree and say ‘yes’ with probability 0 to this item and to the more ‘difficult’ items.
For items between these two extremes we are hesitating and say sometimes ‘yes’,
and sometimes ‘no’. We show more or less random behavior in that case. Since
people do not guess at the more difficult items in this model, the interpretation
for cognitive items is more intricate. We might think of catch-questions in which
people with ability lower than the item difficulty are seduced into giving the wrong
answer.

If the data contain many perfect Guttman patterns when the items are ordered to
‘difficulty’, and if the log-ratio chi square indicates that a model fits well, the LCA
results still need not be what might be expected according to Guttman’s ideas. The
LCA models presented here do not impose order restrictions on the estimated prob-
abilities, as is done in, for instance, the models proposed by Croon (1991). Thus,
the result can be that the order does not follow the Guttman model that underlies
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these LCA models. In our simulation study with the normal data, that follow a
Rasch model, only the LAD and GWG models performed reasonably well in this
respect. The other models failed to reproduce the observed probabilities. This may
be the result of specific characteristics of the data, but a clear explanation fails. The
LAD model finally chosen links up properly with the remaining models, and it is
plausible with respect to the frequency distribution of the perfect Guttman patterns
in the original data. In an empirical study (Van den Wittenboer et al., 1997), we
found that the LAD model performed well in diagnosing aberrance in a sample of
elderly respondents.

The discussion above focuses on interpretation and response processes. A tech-
nical problem encountered with all models, whether applied to simulated or real
data, is the sensitivity of the latent class solution to starting values. Both in LCAG
(Hagenaars and Luijkx, 1987) and Panmark (Van der Pol et al., 1991) the estimation
procedure leads to a local maximum most of the time. Panmark has the option to
generate a large set of random starting values and to compare the results of the
(default) first eight iterations. This default value was not enough, however. Even
after 1000 starting values, we could get into local maxima.4 Only after using twenty
(time consuming) initial iterations for a thousand random starting values, to select
the most promising set of starting values for the estimation procedure, the results
became trustworthy. The problem, however, is that most analysts will expect a
program to produce maximum likelihood estimates, and may not be aware of the
problem of encountering a local maximum. Especially for the inexperienced user,
this is a serious drawback of latent class analysis with computer programs using
the EM algorithm. It would be nice, if a statistical method leading to starting values
could be used that in some sense guarantees that a real maximum will be found.

A related technical problem is that the computer programs show a strong ten-
dency to converge on probabilities equal to zero or one. Guttman classes with
relatively low frequencies, for example, which are nevertheless present in the data,
are often set equal to zero instead of a small probability as one should expect. It
is not obvious whether this is because of the data, the specific models, or the EM
algorithm used in the analysis. One problem that is related to the algorithm is that,
once a latent class is estimated to have probability zero, this value cannot change
in subsequent iterations.

To deal with perfect Guttman classes with ‘zero’ probability, Clogg and Sawyer
(1981) suggest that the item which causes the problem can be eliminated under
certain conditions. It remains unclear, however, which item this should be. Sup-
pose, for example, that we have 4 items ordered from A to D which form a perfect
Guttman scale. Suppose furthermore that the class with pattern 1112 has a proba-
bility of zero. If we now look at the four remaining classes (1111), (1122), (1222),
and (2222), we only observe that the pattern of responses across the classes is
exactly the same for item C as it is for item D. But is this because of item D, or of
item C? In a perfect Guttman scale such a question would not matter; we can leave
out C or D without losing information. In a probabilistic environment where the
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errors also give information about the scalability, it is unclear what should be done.
Therefore, we decided to leave the scale intact. Another suggestion might have
been leaving out the item that causes most of the errors in the otherwise perfect
Guttman patterns, so that we optimize the number of correct Guttman patterns. For
the time being this should be done by hand, while it is still not clear whether this is
the best solution.

Even if none of these problems did interfere with the selection of the final
model, there remains the definition of the two types of errors in the extra latent
classes. Aside from the fact that there are more aberrant response patterns than
these two, albeit more difficult to formulate as restrictions for the computer pro-
grams, the definition of the random aberrants is perhaps to restrictive for random
behavior. In fact, it is equal to the first class of the too restrictive ‘equal true-type-
specific error rates’ model, which also gives rise to equal probabilities of positive
answers to the items. Perhaps, this might be the reason that low probabilities show
up for this class. On the other hand, if this class is left free completely, the infor-
mation is too unsubstantial to draw a conclusion about the kind of errors people
that made. Actually, we ought to have some set of restrictions between completely
free and equal response probabilities, preferably based on theory.

It is interesting to note in this context that systematic aberrance as we defined it
contains restrictions of this type. It allows free probabilities for some items, while
the response probabilities for the most difficult items are fixed at one. Unfortu-
nately, systematic aberrants of this type are scarce in our real life data. Relaxing
the restrictions to a probability of one for errors in the most difficult item of this
class only would interfere too much with the usual error probability that should
be allowed for probabilistic Guttman scales. Nevertheless, we are convinced that
error modeling by means of restrictions in latent class analysis leads to a better
understanding of aberrant response behavior.

Notes

1. It is impossible to improve the likelihood by using more than (j+1)/2=4 latent classes if we
analyze the data as a mixture Rasch model (De Leeuw and Verhelst, 1986; Lindsay et al., 1991).
Since we analyze the data with highly restricted conventional latent class models, this rule.does
not apply here. Even with the two extra classes for intrinsically unscalable respondents (cf.
Goodman, 1975) the results in Table 4 show a strong decrease of the chi-square.

2. Van der Flier’s Q, more completely denoted by Q(x) is the right-tail probability of a response
pattern within the conditional distribution of pattern probabilities, given the probabilities of the
questions of the scale. Thus, Q(x)can be interpreted as the one-tailed significance level (p)
used in statistical testing. That is, a small value of Q(x) indicates that the probability to find
this specific response pattern is small. Therefore, that pattern is unexpected or aberrant. A large
value means that a respondent has a response pattern on a set of questions as could be expected.
The assumptions made for the calculation of Q(x) are identical to the assumptions of Mokken’s
model of monotone homogeneity (monotonicity in the latent trait, local stochastic independence,
and unidimensionality).
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3. We also examined the results with the ‘Guttman with Guessing’ (GWS) model. This proved
somewhat inferior to the LAD model, both in its capacity to correctly detect aberrant response
patterns and in producing estimates of the latent trait.

4. A local maximum is suspected when a restricted model has a smaller chi-square than a less
restricted model, or when the parameter estimates behave erratically across similar models.
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