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Abstract. An important problem in multilevel modeling is what constitutes a sufficient sample size for accurate estimation. In
multilevel analysis, the major restriction is often the higher-level sample size. In this paper, a simulation study is used to determine
the influence of different sample sizes at the group level on the accuracy of the estimates (regression coefficients and variances)
and their standard errors. In addition, the influence of other factors, such as the lowest-level sample size and different variance
distributions between the levels (different intraclass correlations), is examined. The results show that only a small sample size
at level two (meaning a sample of 50 or less) leads to biased estimates of the second-level standard errors. In all of the other
simulated conditions the estimates of the regression coefficients, the variance components, and the standard errors are unbiased
and accurate.
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Introduction

Social and organizational research often studies the re-
lationship between individuals and the groups or orga-
nizations they belong to. The general concept is that
individuals interact with their social contexts, and there-
fore the individual persons are influenced by the social
groups or contexts to which they belong, and the prop-
erties of those groups are in turn influenced by the in-
dividuals who make up that group. Generally, the in-
dividuals and the social groups are conceptualized as a
hierarchical system of individuals and groups, with in-
dividuals and groups defined at separate levels of this
system.

Such systems can be observed at different levels, and
as a result produce data with variables observed at sev-
eral distinct hierarchical levels. This leads to research
and analysis problems that focus on the interaction of
variables that describe the individuals and variables that
describe the groups. This kind of research is now gen-
erally referred to as multilevel research. Several analysis
strategies exist for analyzing multilevel data; for an
overview, we refer to Klein and Kozlowski (2000). One
important class of analysis methods is the hierarchical
linear regression model, or multilevel regression model.
As Cohen and Cohen (1983) show, the ordinary multi-
ple regression model is highly versatile. Using dummy
coding for categorical variables, it can be used for anal-
ysis-of-variance (ANOVA) models as well as for the
more usual multiple regression models. This versatility
carries over to multilevel regression analysis, which is

essentially a multilevel extension of multiple regression
analysis. In addition to organizational research, where
the levels are defined by the individuals and the distinct
levels in the organizations they belong to (cf. Bryk &
Raudenbush, 1989), multilevel regression analysis can
be applied to longitudinal data, where the levels are de-
fined by the measurement occasions nested within in-
dividuals (Raudenbush, 1989; Snijders, 1996). For a
general introduction to multilevel modeling of hierar-
chical data, we refer to Snijders and Bosker (1999),
Heck and Thomas (2000), Raudenbush and Bryk
(2002), and Hox (2002).

The maximum likelihood (ML) estimation methods
used commonly in multilevel analysis are asymptotic,
which translates to the assumption that the sample size
must be sufficiently large. This raises questions about
the acceptable lower limit to the sample size, and the
accuracy of the estimates and the associated standard
errors with relatively small sample sizes. In multilevel
studies, the main problem is usually the sample size at
the group level, because the group-level sample size is
always smaller than the individual-level sample size. In-
creasing the number of groups may be difficult for two
distinct reasons. Firstly, there are costs involved. In-
creasing the number of individuals in the sample means
collecting data on more individuals within the sampled
organizations. Increasing the number of organizations
in the sample means bringing a new organization into
the study. The latter is typically more expensive than
the former. Secondly, we may already have all existing
organizations in our study. If the object is to study how
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organizational behavior in Switzerland is affected by
characteristics of the different cantons, 26 is the absolute
limit to the canton-level sample size.

The few simulation studies that have been carried out
to date, which are reviewed later in this paper, suggest
that the group-level sample size is generally more im-
portant than the total sample size, with large individual-
level sample sizes partially compensating for a small
number of groups. However, these studies use different
approaches, and there is no strong evidence to guide
researchers in their multilevel design decisions. There
is a need for more insight in the problem of multilevel
sample-size requirements. In this study, we use simu-
lation to examine the accuracy of the parameter esti-
mates and the corresponding standard errors, at different
sample sizes for the number of groups and the number
of individuals. The simulation design will be explained
in more detail after the next section, which describes the
multilevel regression model and reviews currently avail-
able simulation studies.

The Multilevel Regression Model

Assume that we have data from J groups, with a differ-
ent number of respondents nj in each group. On the re-
spondent level, we have the outcome of respondent i in
group j, variable Yij. We have one explanatory variable
Xij on the respondent level, and one group-level explan-
atory variable Zj. To model these data, we have a sepa-
rate regression model in each group as follows:

Y � b � b X � e . (1)ij 0j 1j ij ij

The variation of the regression coefficients bj is modeled
by a group-level regression model:

b � c � c Z � u , (2)0j 00 01 j 0j

and

b � c � c Z � u , (3)1j 10 11 j 1j

The individual-level residuals eij are assumed to have a
normal distribution with mean zero and variance .2r e

The group-level residuals u0j and u1j are assumed to have
a multivariate normal distribution with expectation zero,
and to be independent from the residual errors eij. The
variance of the residual errors u0j is specified as and2r e

the variance of the residual errors u0j and u1j is specified
as and .2 2r ru0 u1

This model can be written as one single regression
model by substituting Equations 2 and 3 into Equation
1. Substitution and rearranging terms gives

Y � c � c X � c Z � c X Zij 00 10 ij 01 j 11 ij j

� u � u X � e (4)0j 1j ij ij

The segment c00 � c10Xij � c01Zj � c11XijZj in Equation

4 contains all the fixed coefficients; it is the fixed (or
deterministic) part of the model. The segment u0j �
u1jXij � eij in Equation 4 contains all the random error
terms; it is the random (or stochastic) part of the model.
The term XijZj is an interaction term that appears in the
model because of modeling the varying regression slope
b1j of the respondent-level variable Xij with the group
level variable Zj.

Even if the analysis includes only variables at the
lowest (individual) level, standard multivariate models
are not appropriate. Multilevel models are needed be-
cause grouped data violate the assumption of indepen-
dence of all observations. The amount of dependence
can be expressed as the intraclass correlation (ICC) q.
In the multilevel model, the ICC is estimated by speci-
fying an empty model, as follows:

Y � c � u � e . (5)ij 00 0j if

This model does not explain any variance in Y. It only
decomposes the variance of Y into two independent
components: , which is the variance of the lowest-2re

level errors eij, and , which is the variance of the2ru0

highest-level errors u0j. Using this model, the ICC q is
given by the equation

2 2 2q � r /(r � r ). (6)u0 u0 e

In addition to the sample sizes at the separate levels, the
size of the ICC also may affect the accuracy of the es-
timates (Goldstein, 1995). Therefore, in our simulation,
we have varied not only the sample size at the individual
and the group level, but also the ICC. In general, what
is at issue in multilevel modeling is not so much the
ICC, but the design effect, which indicates how much
the standard errors are underestimated in a complex
sample (Kish, 1965) compared to a simple random sam-
ple. In cluster samples, the design effect is approxi-
mately equal to 1 � (average cluster size � 1)�ICC.
In the multilevel context, Muthén and Satorra (1995)
view a design effect of two as small. In our simulation
setup, we have chosen values for the ICC and group
sizes that make the design effect larger than two in all
simulated conditions.

So far, three major sample properties have been dis-
cussed that may affect the estimates: number of groups,
number of level-one units, and the ICC. In addition, the
estimation method may be important. Multilevel mod-
eling mostly uses ML estimation. Two ML functions are
common in multilevel modeling: full ML (FML) and
restricted ML (RML) (for a description of these, see
Hox, 2002). The difference between FML and RML is
that RML maximizes a likelihood function that is in-
variant for the fixed effects (Goldstein, 1995). Since
RML takes the uncertainty in the fixed parameters into
account when estimating the random parameters, it
should in theory lead to better estimates of the variance
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1 Corrections for clustering based on the design effect (Kish, 1965) assume equal group sizes; multilevel analysis does not. We carried out
some preliminary simulations to assess whether having balanced or unbalanced groups has any influence on multilevel ML estimates, with
a view to including this in the simulation design. However, despite extreme unbalance, there was no discernible effect of unbalance on
the multilevel estimates or their standard errors.

components, especially when the number of groups is
small (Raudenbush & Bryk, 2002).

Review of Existing Research
on Sample Size

There are some simulation studies on this topic, which
mostly investigate the accuracy of the estimates for the
fixed and random parameters with small sample sizes at
either the individual or the group level. Comparatively
less research investigates the accuracy of the standard
errors. Most simulation research that addresses the ac-
curacy of the significance test or the coverage of the
confidence interval is based on asymptotic reasoning:
the standard error is used in conjunction with the stan-
dard normal distribution to generate a p-value or con-
fidence interval. Other approaches exist that may be
more valid in small samples, but are not available in all
multilevel software; such alternative approaches are
taken up in the discussion.

Testing variances using their standard errors is not
optimal because it assumes normality, and because the
null hypothesis that a variance is zero is a test on the
boundary of the permissible parameter space (variances
cannot be negative), where standard likelihood theory is
no longer valid. A variety of alternative approaches have
been proposed (cf. Berkhof & Snijders, 2001, for a re-
view). Since testing variances using their asymptotic
standard errors is still widely used, we incorporate this
procedure in our review and simulation, but discuss the
issues separately for the fixed and the random part.

Accuracy of Regression Coefficients
and Their Standard Errors

The estimates for the regression coefficients appear gen-
erally unbiased, for ordinary least squares (OLS) and
generalized least squares (GLS) as well as ML estima-
tion (Van der Leeden & Busing, 1994; Van der Leeden,
Busing, & Meijer, 1997). OLS estimates are less effi-
cient; Kreft (1996), reanalyzing results from Kim
(1990), finds OLS estimates that are about 90% effi-
cient. Simulations by Van der Leeden and Busing
(1994) and Van der Leeden et al. (1997) suggest that
even when assumptions of normality and large samples
are not met, ML-based standard errors for the fixed pa-
rameters have only a small downward bias. In general,
a large number of groups appears more important than
a large number of individuals per group.

Accuracy of Variance Components
and Their Standard Errors

Estimates of the lowest-level variance are generally
very accurate. The group-level variance components
are sometimes underestimated. Simulation studies by
Busing (1993) and Van der Leeden and Busing (1994)
show that for accurate group-level variance estimates
many groups (more than 100) are needed (cf. Afshar-
tous, 1995).

The simulations by Van der Leeden et al. (1997) show
that the standard errors used to test the variance com-
ponents are generally estimated too small, with RML
again more accurate than FML. Symmetric confidence
intervals around the estimated value also do not perform
well. Browne and Draper (2000) report similar results.
Typically, with 24–30 groups, Browne and Draper re-
port an operating alpha level of about 9%, and with 48–
50 groups about 8%. Again, a large number of groups
appears more important than a large number of individ-
uals per group.

Simulation Design

The Simulation Model and Procedure

We use a simple two-level model, with one explanatory
variable at the individual level and one explanatory vari-
able at the group level, conforming to Equation 4, which
is repeated here:

Y � c � c X � c Z � c X Zij 00 10 ij 01 j 11 ij j

� u � u X � e (4, repeated)0j 1j ij ij

Three conditions are varied in the simulation: (1) num-
ber of groups (NG: three conditions, NG � 30, 50, 100),
(2) group size (GS: three conditions, GS � 5, 30, 50),
and (3) intraclass correlation (ICC: three conditions,
ICC � 0.1, 0.2, 0.3).1

The number of groups is chosen so that the highest
number should be sufficient given the simulations by
Van der Leeden et al. (1997). In practice, 50 groups is
a frequently occurring number in organizational and
school research, and 30 is the smallest acceptable num-
ber according to Kreft and De Leeuw (1998). Similarly,
the group sizes are chosen so that the highest number
should be sufficient. A group size of 30 is normal in
educational research, and a group size of 5 is normal in
family research and in longitudinal research, where the
measurement occasions form the lowest level. The ICCs
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span the customary range of ICC coefficients (Gulliford,
Ukoumunne, & Chinn, 1999).

There are 3 � 3 � 3 � 27 conditions. For each
condition, we generated 1,000 simulated data sets, as-
suming normally distributed residuals. The multilevel
regression model, like its single-level counterpart, as-
sumes that the explanatory variables are fixed. There-
fore, a set of X and Z values are generated from a stan-
dard normal distribution to fulfill the requirements of
the simulation condition with the smallest total sample
size. In the condition with the larger sample sizes, these
values are repeated. This ensures that in all simulated
conditions the joint distribution of X and Z are identical.
The regression coefficients are specified as follows: 1.00
for the intercept, and 0.3 (a medium effect size; cf. Co-
hen, 1988) for all regression slopes. The residual vari-
ance at the lowest level is 0.5. The residual variance2re

follows from the ICC and , given Equation 6. Bus-2 2r ru0 e

ing (1993) shows that the effects for the intercept vari-
ance r00 and the slope variance r11 are similar; hence,
we chose to set the value of r11 equal to r00. To simplify
the simulation model, the covariance between the two
u-terms is assumed equal to zero.

Two ML functions are common in multilevel esti-
mation: FML and RML. We use RML, since this is al-
most always at least as good as FML, and sometimes
better, especially in estimating variance components
(Browne, 1998). The software MLwiN (Rasbash et al.,
2000) was used for both simulation and estimation.

Variables and Analysis

The accuracy of the parameter estimates (factor loadings
and residual variances) is indicated by the percentage

relative bias. Let be the estimate of the populationĥ
parameter h; then the percentage relative bias is given

by . The accuracy of the standard errors isˆ100 � h/h
investigated by analyzing the observed coverage of the
95% confidence interval. Since there are 27,000 simu-
lated conditions, the power is huge. (Given 1,000 sim-
ulations in each condition, the standard error for the cov-
erage probabilities is about 0.007.) As a result, at the
standard significance level of alpha � 0.05, extremely
small bias or coverage errors become significant. There-
fore, our criterion for significance is an alpha � 0.01
for the main effects of the simulated conditions. The
interactions are tested blockwise (two-way, three-way),
with a blockwise Bonferroni correction. Even at this
stricter level of significance, some of the statistically
significant biases correspond to differences in parameter
estimates that do not show up before the third decimal
place. These small effects are discussed in the text, but
not included in the various tables.

Results

Convergence and Inadmissible Solutions

The estimation procedure converged in all 27,000 sim-
ulated data sets. The estimation procedure in MLwiN
can and sometimes does lead to negative variance esti-
mates. Such solutions are inadmissible, and the common
procedure is to constrain such estimates to the boundary
value of zero. However, all 27,000 simulated data sets
produced only admissible solutions.

Parameter Estimates

The fixed parameter estimates, the intercept and regres-
sion slopes, have a negligible bias. The average bias is
smaller than 0.05%. The largest bias was found in the
condition with the smallest sample sizes in combination
with the highest ICC: there the percentage relative bias
was 0.3%. This is of course extremely small. Moreover,
there are no statistically significant differences in bias
across the simulated conditions.

The estimates of the random parameters, the variance
components, also have a negligible bias. The average
bias is smaller than 0.05%. The largest bias was found
in the condition with the smallest sample sizes in com-
bination with the highest ICC: there the percentage rela-
tive bias was again 0.3%. Also, there are no statistically
significant differences in bias across the simulated con-
ditions.

Standard Errors

To assess the accuracy of the standard errors, for each
parameter in each simulated data set the 95% confidence
interval was established using the asymptotic standard
normal distribution (cf. Goldstein, 1995). For each pa-
rameter a noncoverage indicator variable was set up that
is equal to zero if the true value is in the confidence
interval, and equal to one if the true value is outside the
confidence interval. The effect of the number of groups
on the noncoverage is presented in Table 1, the effect
of the group size on noncoverage is presented in Table
2, and the effect of the ICC on noncoverage is presented
in Table 3. Logistic regression was used to assess the
effect of the different simulated conditions on the non-
coverage, which is reported in Tables 1,2,3 as a p-value
for each outcome (last column in the tables).

Table 1 shows that the effect of the number of groups
on the standard errors of the fixed regression coefficients
is small. With 30 groups, the noncoverage rate is 6.0%
for the regression coefficient for X and 6.4% for the
intercept, while the nominal noncoverage rate is 5%. We
regard this difference as unimportant. The effect of the
number of groups on the standard errors of the variance



C.J.M. Maas & J.J. Hox: Sufficient Sample Sizes for Multilevel Modeling90

Methodology 2005; Vol. 1(3):86–92 � 2005 Hogrefe & Huber Publishers

Table 1. Noncoverage of the 95% Confidence Interval by Number
of Groups

Parameter Number of groups p-valuea

30 50 100

U0 .089 .074 .060 .0000
U1 .088 .072 .057 .0000
E .058 .056 .049 .0101
INT .064 .057 .053 .0057
X .060 .057 .050 .0058
Z .052 .051 .050 .9205
XZ .056 .052 .050 .2187

a p-value for the effect of number of groups on mean parameter
estimate.

Table 2. Noncoverage of the 95% Confidence Interval by Group
Size

Parameter Group size p-valuea

5 30 50

U0 .074 .075 .074 .9419
U1 .078 .066 .072 .0080
E .061 .051 .051 .0055
INT .062 .056 .055 .0846
X .055 .054 .057 .6086
Z .055 .048 .049 .0782
XZ .057 .051 .050 .1169

a p-value for the effect of group size on mean parameter estimate.

Table 3. Noncoverage of the 95% Confidence Interval by Intra-
class Correlation

Parameter Intraclass correlation p-valuea

0.1 0.2 0.3

U0 .073 .073 .077 .4973
U1 .071 .073 .073 .8871
E .056 .055 .053 .6212
INT .059 .059 .055 .4238
X .056 .052 .059 .2014
Z .049 .049 .055 .1175
XZ .051 .055 .052 .3931

a p-value for the effect of intraclass correlation on mean parameter
estimate.

components is definitely larger. With 30 groups, the
noncoverage rate for the second-level intercept variance
is 8.9% (U0), and the noncoverage rate for the second-
level slope variance is 8.8% (U1). Although the cover-
age is not grotesquely wrong, the 95% confidence in-
terval is clearly too short. The amount of noncoverage
here implies that the standard errors for the second-level
variance components are estimated about 15% too
small. With 50 groups, the effects are smaller, but still
not negligible. The noncoverage rates of 7.4% and 7.2%
imply that the standard errors are estimated about 9%
too small.

Table 2 shows the same pattern: the coverage of the
95% confidence interval is good for the regression co-
efficients, and less accurate for the variances. The cov-
erage rates improve when the group size increases, but
the group size has a smaller effect on the coverage rates
than the number of groups. The noncoverage of the sec-
ond-level variances does not improve when the group
size increases.

Table 3 again shows that the coverage rates for the
regression coefficients are better than for the variances.
The difference in ICC has no effect on the coverage rate.

The interaction effects of these simulated character-
istics are presented in Table 4. Tested with a blockwise
Bonferroni correction, none of the interactions were sta-
tistically significant.

Given that we use asymptotic (large sample) meth-
ods, the absence of bias in the parameter estimates and
the small bias in the standard errors is encouraging. To
investigate the limits of our results, we carried out one
additional simulation, with only 10 groups of group size
five, varying the ICC from 0.1 to 0.3. This was inspired
by a statement in Snijders and Bosker (1999, p. 44) that
multilevel modeling becomes attractive when the num-
ber of groups is larger than 10. This is indeed a very
small group-level sample size, but given our simulation
results not impossibly small. The results of this small
simulation are presented in Table 5.

The regression coefficients and lowest-level variance
components are again estimated without bias. However,
the group-level variance components were estimated
much too large, with a bias up to 25%. The standard
errors were too small, both for regression coefficients
and for variances. The noncoverage rates for the re-
gression coefficients ranged between 5.7% and 9.7%,
and for the second-level variances they ranged between
16.3% and 30.4%. In our view, this indicates that having
only 10 groups is not enough. Although the ML-
standard errors of the regression coefficients are still
within bounds of reason, the standard errors of the sec-
ond-level variances are clearly unacceptable.

Summary and Discussion

Summing up, both the regression coefficients and the
variance components are all estimated without bias, in
all of the simulated conditions. The standard errors of
the regression coefficients are also estimated accurately,
in all of the simulated conditions. The standard errors
of the second-level variances are estimated too small
when the number of groups is substantially lower than
100. With 30 groups, the standard errors are estimated
about 15% too small, resulting in a noncoverage rate of
almost 8.9%, instead of 5%. With 50 groups, the non-
coverage drops to about 7.3%. This is clearly different
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Table 4. Interaction Effects of the Number of Groups, Group Size, and Intraclass Correlation on the Noncoverage of the 95% Confidence
Interval

Number
of groups

Group
size

ICC UO U1 E INT X Z XZ

30 5 0.1 .103 .116 .069 .064 .060 .056 .058
5 0.2 .086 .093 .067 .073 .063 .052 .062
5 0.3 .080 .093 .051 .072 .067 .071 .065

30 0.1 .088 .064 .047 .060 .065 .052 .046
30 0.2 .079 .075 .053 .064 .049 .041 .051
30 0.3 .095 .089 .064 .057 .055 .047 .057
50 0.1 .084 .082 .070 .065 .062 .037 .048
50 0.2 .082 .091 .050 .075 .060 .048 .063
50 0.3 .107 .086 .053 .043 .062 .060 .053

50 5 0.1 .065 .072 .061 .053 .054 .057 .072
5 0.2 .070 .066 .058 .059 .057 .051 .047
5 0.3 .080 .084 .068 .061 .057 .040 .048

30 0.1 .083 .060 .051 .065 .056 .058 .048
30 0.2 .080 .080 .065 .061 .043 .052 .059
30 0.3 .082 .065 .052 .053 .070 .040 .054
50 0.1 .062 .072 .048 .055 .064 .044 .049
50 0.2 .069 .076 .052 .052 .050 .061 .056
50 0.3 .073 .071 .052 .054 .059 .055 .039

100 5 0.1 .060 .065 .060 .068 .047 .051 .054
5 0.2 .060 .059 .062 .048 .041 .053 .062
5 0.3 .061 .057 .050 .061 .048 .065 .043

30 0.1 .053 .050 .050 .047 .051 .045 .047
30 0.2 .059 .058 .043 .053 .051 .039 .046
30 0.3 .056 .056 .035 .047 .048 .060 .053
50 0.1 .058 .060 .046 .054 .041 .037 .041
50 0.2 .071 .059 .043 .047 .058 .047 .053
50 0.3 .058 .053 .048 .048 .061 .055 .052

Table 5. Noncoverage of the 95% Confidence Interval
(10 Groups of Size Five) for Different Intraclass Correlations

Parameter Intraclass correlation p-value

0.1 0.2 0.3

U0 .294 .163 .172 .0000
U1 .304 .215 .203 .0000
E .095 .084 .073 .2076
INT .061 .086 .087 .0490
X .071 .094 .075 .1286
Z .072 .078 .080 .7829
XZ .062 .097 .077 .0142

a p-value for the effect of intraclass correlation on mean parameter
estimate.

from the nominal 5%, but in practice probably accept-
able.

The results from the various simulations reviewed in
this article appear somewhat inconsistent. However, this
is probably the result of using different simulation de-
signs and different simulated conditions. Our results are
comparable with the simulation results reported by Bus-
ing (1993), Van der Leeden and Busing, (1994) and
Browne and Draper (2000) when only those conditions
are considered that are similar to the conditions in our
simulations.

In our study, we investigate the effect of the simulated
design characteristics on the accuracy of the parameter
estimates and their standard errors, using the standard
large-sample approach to constructing the 95% confi-
dence interval. As noted earlier, this is not optimal for
testing variances, even if the sample sizes are suffi-
ciently large. Berkhof and Snijders (2001) show that a
modified likelihood-ratio test is better for testing vari-
ance components. When fixed effects (regression coef-
ficients) are tested in small samples, methods exist that
may be more accurate. Approximations based on esti-
mating the number of degrees of freedom for the Wald
test (Satterthwaite approximation; cf. Elston, 1998) or
on correcting the likelihood-ratio test (Welham &
Thompson, 1997) appear to be useful here (Manor &
Zucker, 2004). However, these methods are not imple-
mented in widely used multilevel software such as
MLwiN or HLM.

Since the estimates of the regression coefficients are
unbiased, even if the sample is as small as 10 groups of
five units, bootstrapping or other simulation-based
methods (cf. Goldstein, 2003; Hox, 2002) may also be
useful to assess the sampling variability, provided we
are interested only in the regression coefficients. Boot-
strapping small sample data is discussed by Yung and
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Chan (1999). However, these methods are currently
only implemented in MLwiN.
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