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Multilevel and SEM
Approaches to Growth
Curve Modeling

Introduction

A broad range of statistical methods exists for analyz-
ing data from longitudinal designs (see Longitudinal
Data Analysis). Each of these methods has specific
features and the use of a particular method in a spe-
cific situation depends on such things as the type of
research, the research question, and so on. The central
concern of longitudinal research, however, revolves
around the description of patterns of stability and
change, and the explanation of how and why change
does or does not take place [9].

A common design for longitudinal research in the
social sciences is the panel or repeated measures
design (see Repeated Measures Analysis of Vari-
ance), in which a sample of subjects is observed at
more than one point in time. If all individuals provide
measurements at the same set of occasions, we have a
fixed occasions design. When occasions are varying,
we have a set of measures taken at different points
in time for different individuals. Such data occur, for
instance, in growth studies, where individual mea-
surements are collected for a sample of individuals at
different occasions in their development (see Growth
Curve Modeling). The data collection could be at
fixed occasions, but the individuals have different
ages. The distinction between fixed occasions designs
and varying occasions designs is important, since they
may lead to different analysis methods.

Several distinct statistical techniques are available
for the analyses of panel data. In recent years, growth
curve modeling has become popular [11, 12, 13, 24].
All subjects in a given population are assumed to
have developmental curves of the same functional
form (e.g., all linear), but the parameters describing
their curves may differ. With linear developmental
curves, for example, there may be individual differ-
ences in the initial level as well as in the growth rate
or rate of change. Growth curve analysis is a statis-
tical technique to estimate these parameters. Growth
curve analysis is used to obtain a description of the
mean growth in a population over a specific period of
time (see Growth Curve Modeling). However, the

main emphasis lies in explaining variability between
subjects in the parameters that describe their growth
curves, that is, in interindividual differences in intra-
individual change [25].

The model on which growth curve analysis is
based, the growth curve model, can be approached
from several perspectives. On the one hand, the
model can be constructed as a standard two-level
multilevel regression (MLR) model [4, 5, 20] (see
Linear Multilevel Models). The repeated measures
are positioned at the lowest level (level-1 or the
occasion level), and are then treated as nested within
the individuals (level-2 or the individual level), the
same way as a standard cross-sectional multilevel
model treats children as being nested within classes.
The model can therefore be estimated using standard
MLR software. On the other hand, the model can be
constructed as a structural equation model (SEM).
Structural equation modeling uses latent variables
to account for the relations between the observed
variables, hence the name latent growth curve (LGC)
model. The two approaches can be used to formulate
equivalent models, providing identical estimates for
a given data set [3].

The Longitudinal Multilevel or Latent
Growth Curve Model

Both MLR and LGC incorporate the factor ‘time’
explicitly. Within the MLR framework time is mod-
eled as an independent variable at the lowest level, the
individual is defined at the second level, and explana-
tory variables can be included at all existing levels.
The intercept and slope describe the mean growth.
Interindividual differences in the parameters describ-
ing the growth curve are modeled as random effects
for the intercept and slope of the time variable. The
LGC approach adopts a latent variable view. Time
is incorporated as specific constrained values for the
factor loadings of the latent variable that represents
the slope of the growth curve; all factor loadings of
the latent variable that represents the intercept are
constrained to the value of 1. The latent variable
means for the intercept and slope factor describe
the mean growth. Interindividual differences in the
parameters describing the growth curve are modeled
as the (co)variances of the intercept and slope factors.
The mean and covariance structure of the latent vari-
ables in LGC analysis correspond to the fixed and
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random effects in MLR analysis, and this makes it
possible to specify exactly the same model as a LGC
or MLR model [23]. If this is done, exactly the same
parameter estimates will emerge, as will be illustrated
in the example.

The general growth curve model, for the repeat-
edly measured variable yti of individual i at occasion
t , may be written as:

yti = λ0t η0i + λ1t η1i + γ2t xti + εti

η0i = ν0 + γ0zi + ζ0i (1)

η1i = ν1 + γ1zi + ζ1i ,

where λ1t denotes the time of measurement and λ0t a
constant equal to the value of 1. Note that in a fixed
occasions design λ1t will typically be a consecutive
series of integers (e.g., [0, 1, 2, . . . , T]) equal to all
individuals, while in a varying occasions design λ1t ·
can take on different values across individuals. The
individual intercept and slope of the growth curve
are represented by η0i and η1i , respectively, with
expectations ν0 and ν1, and random departures or
residuals, ζ0i and ζ1i , respectively. γ2t represents the
effect of the time-varying covariate xti ; γ0 and γ1

are the effects of the time-invariant covariate on the
initial level and linear slope. Time-specific deviations
are represented by the independent and identically
standard normal distributed εti , with variance σ 2

ε .
The variances of ζ0i and ζ1i , and their covariance
are represented by:

�ζ =
[

σ 2
0

σ01 σ 2
1

]
. (2)

Furthermore, it is assumed that cov(εit , εit ′) = 0,
cov(εit , ηi0) = 0, cov(εit , ηi1) = 0.

Within the longitudinal MLR model η0i and η1i are
the random parameters, and λ1t is an observed vari-
able representing time. In the LGC model η0i and η1i

are the latent variables and λ0t and λ1t are parame-
ters, that is, factor loadings. Thus, the only difference
between the models is the way time is incorporated
in the model. In the MLR model time is introduced
as a fixed explanatory variable, whereas in the LGC
model it is introduced via the factor loadings. So, in
the longitudinal MLR model an additional variable
is added, and in the LGC model the factor loadings
for the repeatedly measured variable are constrained
in such a way that they represent time. The con-
sequence of this is that with reference to the basic

growth curve model, MLR is essentially a univariate
approach, with time points treated as observations of
the same variable, whereas the LGC model is essen-
tially a multivariate approach, with each time point
treated as a separate variable [23]. Figure 1 presents
a path diagram depicting a LGC model for four mea-
surement occasions, for simplicity without covariates.
Following SEM conventions, the first path for the
latent slope factor, which is constrained to equal zero,
is usually not present in the diagram.

The specific ways MLR and LGC model ‘time’
have certain consequences for the analysis. In the
LGC approach, λ1t cannot vary between subjects,
which makes it best suited for a fixed occasions
design. LGC modeling can be used for designs with
varying occasions by modeling all existing occasions
and viewing the varying occasions as a missing data
problem, but when the number of existing cases
is large this approach becomes unmanageable. In
the MLR approach, λ1t is simply a time-varying
explanatory variable that can take on any variable,
which makes MLR the best approach if there are
a large number of varying occasions. There are
also some differences between the LGC and MLR
approach in the ways the model can be extended. In
the LGC approach, it is straightforward to embed the
LGC model in a larger path model, for instance, by
combining several growth curves in one model, or
by using the intercept and slope factors as predictors
for outcome values measured at a later occasion. The
MLR approach does not deal well with such extended
models. On the other hand, in the MLR approach it
is simple to add more levels, for instance to model a
growth process of pupils nested in classes nested in
schools. In the LGC approach, it is possible to embed
a LGC model in a two-level structural equation
model [14], but adding more levels is problematic.

Example

We will illustrate the application of both the MLR
model and the LGC model using a hypothetical
study in which data on the language acquisition of
300 children were collected during primary school
at 4 consecutive occasions. Besides this, data were
collected on the children’s intelligence, as well as,
on each occasion a measure of their emotional
well-being. The same data have been analyzed by
Stoel, et al. [23], who also discuss extensions and
applications of both models.
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Figure 1 Path diagram of a four-wave latent growth curve model

The aim of the study is testing the hypothesis
that there exists substantial growth in language
acquisition, and that there is substantial variability
between the children in their growth curves. Given
interindividual differences in the growth curves,
it is hypothesized that intelligence explains (part
of) the interindividual variation in the growth

curves and that emotional well-being explains the
time-specific deviations from the mean growth curve.
The covariance matrix and mean vector are presented
in Table 1.

Analyzing these data using both the MLR and
LGC model with Maximum Likelihood estimation
leads to the parameter estimates presented in Table 2.

Table 1 Covariance matrix and means vector

y1 y2 y3 y4 x1 x2 x3 x4 z means

y1 1.58 9.83
y2 1.28 4.15 11.72
y3 1.52 4.91 8.90 13.66
y4 1.77 6.83 11.26 17.50 15.65
x1 0.99 −0.08 −0.26 −0.33 2.17 0.00
x2 0.16 1.44 0.17 0.18 0.13 2.56 0.00
x3 0.07 −0.13 1.2 −0.27 −0.06 −0.09 2.35 0.00
x4 0.08 0.23 0.46 1.98 0.03 −0.04 0.10 2.24 0.00
z 0.34 1.28 2.01 3.01 −0.08 0.07 0.01 0.06 0.96 0.00

Note: y = language acquisition, x = emotional well-being, z = intelligence.
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Table 2 Maximum likelihood estimates of the parameters
of (1), using multilevel regression and latent growth curve
analysis

Parameter MLR LGC

Fixed part
ν0 9.89 (.06) 9.89 (.06)
ν1 1.96 (.05) 1.96 (.05)
γ0 0.40 (.06) 0.40 (.06)
γ1 0.90 (.05) 0.90 (.05)
γ2 0.55 (.01) 0.55 (.01)

Random part
σ 2

ε 0.25 (.01) 0.25 (.01)
σ 2

0 0.78 (.08) 0.78 (.08)
σ 2

1 0.64 (.06) 0.64 (.06)
σ01 0.00 (.05) 0.00 (.05)

Note: Standard errors are given in parentheses. The Chi-square
test of model fit for the LGC model: χ2(25) = 37.84(p = .95);
RMSEA = 0.00. For the MLR model: −2∗loglikelihood =
3346.114.

The first column of Table 2 presents the relevant
parameters; the second and third columns show the
parameter estimates of respectively the MLR, and
LGC model.

As one can see in Table 2 the parameter estimates
are the same and, consequently, both approaches
would lead to the same substantive conclusions.
According to the overall measure of fit provided by
SEM, the model seems to fit the data quite well.
Thus, the conclusions can be summarized as follows.
After controlling for the effect of the covariates, a
mean growth curve emerges with an initial level
of 9.89 and a growth rate of 1.96. The significant
variation between the subjects around these mean
values implies that subjects start their growth process
at different values and grow subsequently at different
rates. The correlation between initial level and growth
rate is zero. In other words, the initial level has
no predictive value for the growth rate. Intelligence
has a positive effect on both the initial level and
growth rate, leading to the conclusion that children
who are more intelligent show a higher score at the
first measurement occasion and a greater increase
in language acquisition than children with lower
intelligence. Emotional well-being explains the time-
specific deviations from the mean growth curve.
That is, children with a higher emotional well-
being at a specific time point show a higher score
on language acquisition than is predicted by their
growth curve.

Dichotomous and Ordinal Data

Both conventional structural equation modeling and
multilevel regression analysis assume that the out-
come variable(s) are continuous and have a (multi-
variate) normal distribution. In practice, many vari-
ables are measured as ordinal categorical variables,
for example, the responses on a five- or seven-
point Likert attitude question. Often, researchers treat
such variables as if they were continuous and nor-
mal variables. If the number of response categories
is fairly large and the response distribution is sym-
metric, treating these variables as continuous normal
variable appears to work quite well. For instance,
Bollen and Barb [2] show in a simulation study that
if bivariate normal variables are categorized into at
least five response categories, the differences between
the correlation between the original variables and
the correlation of the categorized variables is small
(see Categorizing Data). Johnson and Creech [7]
show that this also holds for parameter estimates and
model fit. However, when the number of categories
is smaller than five, the distortion becomes sizable. It
is clear that such variables require special treatment.

A Categorical ordinal variable can be viewed as a
crude observation of an underlying latent variable.
The same model that is used for the continuous
variables is used, but it is assumed to hold for
the underlying latent response. The residuals are
assumed to have a standard normal distribution,
or a logistic distribution. The categories of the
ordinal variable arise from applying thresholds to
the latent continuous variable. Assume that we have
an ordered categorical variable with three categories,
for example, ‘disagree’, ‘neutral’, and ‘agree.’ The
relation of this variable to the underlying normal
latent variable is depicted in Figure 2.

The position on the latent variable determines
which categorical response is observed. Specifically,

yi =
{ 1, if y∗

i ≤ τ1

2, if τ1 < y∗
i ≤ τ2

3, if τ2 < y∗
i ,

(3)

where yi is the observed categorical variable, y∗
i is

the latent continuous variable, and τ1 and τ2 are the
thresholds. Note that a dichotomous variable only
has one threshold, which becomes the intercept in
a regression equation.

To analyze ordered categorical data in a multi-
level regression context, the common approach is
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Figure 2 Illustration of two thresholds underlying a three-category variable

to assume a normal or a logistic distribution (see
Catalogue of Probability Density Functions). There
are several estimation methods available; most soft-
ware relies on a Taylor series approximation to the
likelihood, although some software is capable of
numerical integration of the likelihood. For a discus-
sion of estimation in nonnormal multilevel models
computational details, we refer to the literature, for
example [4, 20]. The common approach in structural
equation modeling is to estimate polychoric correla-
tions, that is, the correlations between the underlying
latent responses, and apply conventional SEM meth-
ods. This approach also assumes a standard normal
distribution for the residuals. For statistical issues
and computational details, we refer to the litera-
ture, for example [1, 8] (see Structural Equation
Modeling: Categorical Variables). The important
point here for both types of modeling is that when
the number of categories of an outcome variable
is small, using an analysis approach that assumes
continuous variables may lead to strongly biased
results.

To give an indication of the extent of the bias, the
outcome variables of the language acquisition exam-
ple were dichotomized on their common median. This
leads to a data set where the number of ‘zero’ and
‘one’ scores on the four Y variables taken together is
50% each, with the proportion of ‘one’ scores goes
up from 0.04 through 0.44 at the first occasion to
0.72 to 0.81 at the last occasion. Table 3 presents
the results of three multilevel analyses for a model
with a linear random effect for time: (1) Maximum
likelihood estimation on a standardized continuous
outcome Z (mean zero and variance one across Y1
to Y4) assuming normality, (2) Maximum Likelihood
estimation on the dichotomized outcome D assuming
normality, and (3) approximate Maximum Likelihood
estimation on the dichotomized outcome D assuming
a logistic model and using a Laplace approximation
(Laplace6 in HLM5, [22]).

The parameter estimates are different across all
three methods. This is not surprising, because the Z-
scores are standardized to a mean of 0 and a variance
of 1, the dichotomous variables have an overall mean

Table 3 Estimates of the parameters of (1), using multilevel regression and different estimation methods

Parameter ML on Z assuming normality ML on D assuming normality Approximate ML on D assuming logistic

Fixed Part
ν0 −0.82 0.11 −2.44
ν1 0.54 0.26 1.80

Random part
σ 2

ε 0.07 0.10 –
σ 2

0 0.07 0.01 0.24
σ 2

1 0.12 0.01 0.60
σ01 0.03 0.01 0.38
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of 0.5 and a variance of 0.25, and the underlying con-
tinuous variable y∗ has a mean of 0 and a residual
variance of approximately 3.29. However, statistical
tests on the variance components lead to drastically
different conclusions. An ordinary likelihood-ratio
test on the variances is not appropriate, because the
null-hypothesis is a value that lies on the boundary of
the parameter space. Instead, we apply the chi-square
test described by Raudenbush and Bryk [21], which
is based on the residuals. The multilevel regression
analysis on the continuous Z-scores leads to signifi-
cant variance components (p < 0.01). The multilevel
logistic regression analysis on the dichotomized D-
scores leads to variance components that are also sig-
nificant (p < 0.01). On the other hand, the multilevel
regression analysis on the dichotomized D-scores
using standard Maximum Likelihood estimation for
continuous outcomes, leads to variance components
that are not significant (p > 0.80). Thus, for our
example data, using standard Maximum Likelihood
estimation assuming a continuous outcome on the
dichotomized variable leads to substantively different
and in fact misleading conclusions.

Extensions

The model in (1) can be extended in a number of
ways. We will describe some of these extensions
in this section separately, but they can in fact be
combined in one model.

Extending the Number of Levels

First, let us assume that we have collected data on
several occasions from individuals within classes,
and that there are (systematic) differences between
classes in intercept and slope. The model in (1) can
easily account for such a ‘three-level’ structure by
adding the class-specific subscript j . The model then
becomes:

ytij = λ0t η0ij + λ1t η1ij + γ2t xtij + εtij

η0ij = ν0j + γ0zi + ζ0ij

η1ij = ν1j + γ1zi + ζ1ij (4)

ν0j = ν0 + ζ2j

ν1j = ν1 + ζ3j ,

and reflects the fact that the mean intercept and
slope (ν0j and ν0j , respectively) may be different
across classes. Note that (4) turns into (1) if ζ2j

and ζ3j are constrained to zero. Incorporating class-
level covariates and additional higher levels in the
hierarchy are straightforward.

Extending the Measurement Model

Secondly, the model in (1) can be easily extended
to include multiple indicators of a construct at each
occasion explicitly. Essentially this extension merges
the growth curve model with a measurement (latent
factor) model at each occasion. For example if yti

represented a mean score over R items, we may rec-
ognize that yti = ∑R

r=1 yrti/m. Instead of modeling
observed item parcels, the R individual items yrti

can be modeled directly. That is, to model them,
explicitly, as indicators of a latent construct or fac-
tor at each measurement occasion. A growth model
may then be constructed to explain the variance
and covariance among the first-order latent factors.
This approach has been termed second-order growth
modeling in contrast to first-order growth modeling
on the observed indicators. Different names for the
same model are ‘curve-of-factors model’ and ‘mul-
tiple indicator latent growth model’ [12]. Note that
modeling multiple indicators in a longitudinal setting
requires a test on the structure of the measurements,
that is a test of measurement invariance or facto-
rial invariance [1, 8]. The model incorporating all yrti

explicitly then becomes:

yrti = αr + λrηti + εri

ηti = λ0t η0i + λ1t η1i + γ2t xti + ζti

η0i = ν0 + γ0zi + ζ0i

η1i = ν1 + γ1zi + ζ1i , (5)

where αr and λr represent, respectively, the item-
specific intercept and factor loading of item r , and
εri is a residual. ηti is an individual and time-specific
latent factor corresponding to yti of Model (1), ζti is a
random deviation corresponding to εti of Model (1).
The growth curve model is subsequently built on
the latent factor scores ηti with λ1t representing the
time of measurement and λ1t a constant equal to the
value of 1. This model thus allows for a separation
of measurement error εri and individual time-specific
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deviation ζti . In Model (1) these components are
confounded in εti .

Nonlinear Growth

The model discussed so far assumes linear growth.
The factor time is incorporated explicitly in the model
by constraining λ1t in (1) explicitly to known values
to represent the occasions at which the subjects ere
measured. This is, however, not a necessary restric-
tion; it is possible to estimate a more general, that is
nonlinear, model in which values of λ1t are estimated
(see Nonlinear Mixed Effects Models; Nonlinear
Models). Thus, instead of constraining λ1t to, for
example [0, 1, 2, 3 . . . T ], some elements are left free
to be estimated, providing information on the shape
of the growth curve. For purposes of identification,
at least two elements of λ1t need to be fixed. The
remaining values are then estimated to provide infor-
mation on the shape of the curve; λ1t then becomes
[0, 1, λ12, λ13, . . . , λ1T −1]. So, essentially, a linear
model is estimated, while the nonlinear interpreta-
tion comes from relating the estimated λ1t to the real
time frame [13, 24]. The transformation of λ1t to the
real time frame gives the nonlinear interpretation.

Further Extensions

Further noteworthy extensions of the standard growth
model in (1) which we will briefly sum up here are:

• The assumption of independent and identically
distributed residuals can be relaxed. In other
words, the model in (1) may incorporate a more
complex type of residual structure. In fact, any
type of residual structure can be implemented,
provided the resulting model is identified.

• As stated earlier, the assumption that all individu-
als have been measured at the same measurement
occasions as implied by Model (1) can be relaxed
by giving λ1t in (1) an individual subscript i. λ1t i

can subsequently be partly, or even completely
different across individuals. However, using LGC
modeling requires that we treat different λ1t i’s
across subjects as a balanced design with missing
data (i.e., that not all subjects have been mea-
sured at all occasions), and assumptions about the
missing data mechanism need to be made.

• Growth mixture modeling provides an interesting
extension of conventional growth curve analysis.
By incorporating a categorical latent variable it is
possible to represent a mixture of subpopulations
where population membership is not known but
instead must be inferred from the data [15, 16,
18]. See Li et al. [10], for a didactic example of
this methodology.

Estimation and Software

When applied to longitudinal data as described above,
the MLR and LGC model are identical; they only
differ in their representation. However, these models
come from different traditions, and the software was
originally developed to analyze different problems.
This has consequences for the way the data are
entered into the program, the choices the analyst must
make, and the ease with which specific extensions of
the model are handled by the software.

LGC modeling is a special case of the gen-
eral approach known as structural equation modeling
(SEM). Structural equation modeling is inherently
a multivariate analyst method, and it is therefore
straightforward to extend the basic model with other
(latent or observed) variables. Standard SEM soft-
ware abounds with options to test the fit of the
model, compare groups, and constrain parameters
within and across groups. This makes SEM a very
flexible analysis tool, and LGC modeling using SEM
shows this flexibility. Typically, the different mea-
surement occasions are introduced as separate vari-
ables. Time-varying covariates are also introduced as
separate variables that affect the outcome measures
at the corresponding measurement occasions. Time
invariant covariates are typically incorporated in the
model by giving these an effect on the latent variables
that represent the intercept or the slope. However, it
is also possible to allow the time invariant covari-
ates to have direct effects on the outcome variables
at each measurement occasion. This leads to a dif-
ferent model. In LGC modeling using SEM, it is
a straightforward extension to model effects of the
latent intercept and slope variables on other vari-
ables, including analyzing two LGC trajectories in
one model and investigating how their intercepts and
slopes are related.

The flexibility of LGC analysis using SEM implies
that the analyst is responsible for ensuring that the
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model is set up properly. For instance, one extension
of the basic LGC model discussed in the previous
section is to use a number of indicators for the
outcome measure and extend the model by including
a measurement model. In this situation, the growth
model is modeled on the consecutive latent variables.
To ensure that the measurement model is invariant
over time, the corresponding factor loadings for
measurements across time must be constrained to be
equal. In addition, since the LGC model involves
changes in individual scores and the overall mean
across time, means and intercepts are included in the
model, and the corresponding intercepts must also be
constrained equal over time.

Adding additional levels to the model is rela-
tively difficult using the SEM approach. Muthén [14]
has proposed a limited information Maximum Like-
lihood method to estimate parameters in two-level
SEM. This approach works well [6], and can be
implemented in standard SEM software [5]. Since the
LGC model can be estimated using standard SEM,
two-level SEM can include a LGC model at the indi-
vidual (lowest) level, with groups at the second level.
However, adding more levels is cumbersome in the
SEM approach.

Multilevel Regression (MLR) is a univariate
method, where adding an extra (lowest) level for
the variables allows analysts to carry out multivari-
ate analyses. So, growth curve analysis using MLR
is accomplished by adding a level for the repeated
measurement occasions. Most MLR software requires
that the data matrix is organized by having a sepa-
rate row for each measurement occasion within each
individual, with the time invariant individual char-
acteristics repeated for occasions within the same
individual. Adding time-varying or time invariant
covariates to the model is straightforward; they are
just added as predictor variables. Allowing the time
invariant covariates to have direct effects on the
outcome variables at each measurement occasion is
more complicated, because in the MLR approach this
requires specifying interactions of these predictors
with dummy variables that indicate the measure-
ment occasions.

Adding additional levels is simple in MLR; after
all, this is what the software was designed for. The
maximum number of levels is defined by software
restrictions; the current record is MLwiN [20], which
is designed to handle up to 50 levels. This may seem
excessive, but many special analyses are set up in

multilevel regression software by including an extra
level. This is used, for instance, to model multivariate
outcomes, cross-classified data, and specify measure-
ment models. For such models, a nesting structure of
up to five levels is not unusual, and not all multilevel
regression software can accommodate this.

The MLR model is more limited than SEM.
For instance, it is not possible to let the intercept
and slopes act as predictors in a more elaborate
path model. The limitations show especially when
models are estimated that include latent variables. For
instance, models with latent variables over time that
are indicated by observed variables, easy to specify
in SEM, can be set up in MLR using an extra variable
level. At this (lowest) level, dummy variables are
used to indicate variables that belong to the same
construct at different measurement occasions. The
regression coefficients for these dummies are allowed
to vary at the occasion level, and they are interpreted
as latent variables in a measurement model. However,
this measurement model is more restricted than
the measurement in the analogous SEM. In the
MLR approach, the measurement model is a factor
model with equal loadings for all variables, and one
common error variance for the unique factors. In
some situations, for instance, when the indicators are
items measured using the same response scale, this
restriction may be reasonable. It also ensures that
the measurement model is invariant over time. The
important issue is of course that this restriction cannot
be relaxed in the MLR model, and it cannot be tested.

Most modern structural equation modeling soft-
ware can be used to analyze LGC models. If the data
are unbalanced, either by design or because of panel
attrition, it is important that the software supports
analyzing incomplete data using the raw Likelihood.
If there are categorical response variables, it is impor-
tant that the software supports their analysis. At
the time of writing, only Muthén’s software Mplus
supports the combination of categorical incomplete
data [17].

Longitudinal data can be handled by all multilevel
software. Some software supports analyzing specific
covariance structures over time, such as autoregres-
sive models. When outcome variables may be cate-
gorical, there is considerable variation in the estima-
tion methods employed. Most multilevel regression
relies on Taylor series linearization, but increasingly
numerical integration is used, which is regarded as
more accurate.



Multilevel and SEM Approaches to Growth Curve Modeling 9

A recent development in the field is that the dis-
tinction between MLR and LGC analysis is blurring.
Advanced structural equation modeling software is
now incorporating some multilevel features. Mplus,
for example, goes a long way towards bridging the
gap between the two approaches [15, 16]. On the
other hand MLR software is incorporating features
of LGC modeling. Two MLR software packages
allow linear relations between the growth parameters:
HLM [22] and GLLAMM [19]. HLM offers a vari-
ety of residual covariance structures for MLR models.
The GLLAMM framework is especially powerful; it
can be viewed as a multilevel regression approach
that allows factor loadings, variable-specific unique
variances, as well as structural equations among latent
variables (both factors and random coefficients). In
addition, it supports categorical and incomplete data.
As the result of further developments in both sta-
tistical models and software, the two approaches to
growth curve modeling may in time merge (see Soft-
ware for Statistical Analyses; Structural Equation
Modeling: Software).

Discussion

Many methods are available for the analysis of longi-
tudinal data. There is no single preferred procedure,
since different substantial questions dictate differ-
ent data structures and statistical models. This entry
focuses on growth curve analysis. Growth curve anal-
ysis, and its SEM variant latent growth curve analy-
sis, has advantages for the study of change if it can
be assumed that change is systematically related to
the passage of time. Identifying individual differences
in change, as well as understanding the process of
change are considered critical issues in developmen-
tal research by many scholars. Growth curve analysis
explicitly reflects on both intra-individual change and
interindividual differences in such change.

In this entry, we described the general growth
curve model and discussed differences between the
multilevel regression approach and latent growth
curve analysis using structural equation modeling.
The basic growth curve model has a similar rep-
resentation, and gives equivalent results in both
approaches. Differences exist in the ways the model
can be extended. In many instances, latent growth
curve analysis is preferred because of its greater
flexibility. Multilevel Regression is preferable if the

growth model must be embedded in a larger number
of hierarchical data levels.
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