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PREFACE

... of making many books there is no end;
and much study is a weariness of the flesh.

Ecclesiastes 12:12

This book is meant as a basic and fairly nontechnical introduction to multilevel
analysis, for applied researchers in the social sciences. The term ‘multilevel’ refers
to a hierarchical or nested data structure, usually people within organizational
groups, but the nesting may also consist of repeated measures within people, or
respondents within clusters as in cluster sampling. The expression Multilevel
model or multilevel analysis is used as a generic term for all models for nested
data. This book presents two multilevel models: the multilevel regression model
and a model for multilevel covariance structures.

I thank Rian van Blokland-Vogelesang, Pieter van den Eeden, Edith de
Leeuw, Godfried van den Wittenboer, and Tom Snijders for their comments on
earlier drafts. I also thank Jaap Dronkers, Edith de Leeuw, Arie van Peet, Bert
Schijf and Kees van der Wolf for their permission to use their data for the
examples.

I gratefully acknowledge the organizational support of my employing
organization, the Faculty of Educational Sciences of the University of Amsterdam.
Furthermore, I have enjoyed the opportunity to stay as a Fulbright scholar at the
Department of Psychology and the Social Statistics Program of the University of
California, Los Angeles. I thank both organizations for providing a stimulating
research environment.

My research has benefited from the lively discussions in various research
committees of which I am a member. I specifically want to mention the
SOMO/NOSMO research committees on Multilevel Research (MULOG) and on
Conceptualization and Research Design.

This second edition of Applied Multilevel Analysis follows the text of the first
edition, with a few alterations. First, I have corrected a number of small errors in
the text and the equations. Second, I have incorporated a number of improvements
suggested in reviews by Ian Plewis and Rian van Blokland-Vogelesang. Third, I
have rewritten part of the material on the programs HLM and MLn to reflect
software upgrades. Still, the chapter on HLM, VARCL and MLn should not be
read as a complete introduction to the software; the available program packages
are much more powerful than I can show here.



vii

Multilevel analysis is a complex and diverse field. The goal of this book is to
provide an introduction to the basic approach and purpose. It can only give a first
impression of the great diversity and depth of multilevel analysis. Several more
advanced texts are available to researchers for further study. In addition, the
Multilevel Models Project of The University of London publishes a Multilevel
Modelling Newsletter (information available via the multilevel modeling website
http://www.ioe.ac.uk/multilevel/>. There is also an e-mail distribution list for
multilevel research (via mailbase@mailbase.ac.uk).

J.J. Hox

Amsterdam
September 1995

Notes on the electronic edition:

This is the complete text of the book ‘Applied Multilevel Analysis.’ The book is now
out of print, and will not be reprinted because I feel it is becoming outdated. Since
many people still consider it a very readable introduction to the basics of
multilevel analysis, I have decided to make it available as an electronic web
document. The usual copyright still applies; anyone may use this material for
noncommercial purposes, provided the original source is referenced and fully cited.

To turn the original file into a PDF file, I have converted to a Windows
program. As a result, the page format has changed slightly, and the page numbers
in the index may not be completely accurate. If readers send me corrections, I will
include these in later electronic editions.

Amsterdam
January 1999
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1. Introduction

Social research often concerns problems that investigate the relationship between
individual and society. The general concept is that individuals interact with the
social contexts to which they belong, meaning that individual persons are
influenced by the social groups to which they belong, and that the properties of
those groups are in turn influenced by the individuals who make up that group.
Generally the individuals and the social groups are conceptualized as a
hierarchical system of individuals and groups, with individuals and groups
defined at separate levels of this hierarchical system. Naturally, such systems can
be observed at different hierarchical levels, and as a result may have variables
defined at each level. This leads to research into the interaction between variables
that describe the individuals and variables that describe the social groups, a kind
of research that is now often referred to as `multilevel research'.

In multilevel research, the data structure in the population is hierarchical,
and the sample data are viewed as a multistage sample from this hierarchical
population. Thus, in educational research, the population consists of schools and
pupils within these schools, and the sampling procedure proceeds in two stages:
first we take a sample of schools, and next we take a sample of pupils within each
school.1 In this example, pupils are said to be nested within schools. Other
examples are cross-national studies where the individuals are nested within their
national units, organizational research with individuals nested within
organizations, family research with family members within families, and
methodological research into interviewer effects with respondents nested within
interviewers. Less obvious applications of multilevel models are longitudinal
research and growth research where several distinct observations are nested
within individuals, and meta-analysis where the subjects are nested within
different studies. For simplicity I will mostly describe the multilevel models in this

                                           
    1Of course in real research one may have a convenience sample at either level, or one may
decide not to sample pupils but to study all pupils in the sample of schools. Nevertheless, one
should keep firmly in mind that the central notion is one of successive sampling from each
level of a hierarchical population.
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book in terms of individuals nested within groups, and use examples about pupils
nested within schools, but note that the models apply to a much larger class of
analysis problems.

In multilevel research, variables can be defined at any level of the hierarchy. Some
of these variables may be measured directly at their natural level; for example, at
the school level we may measure school size and denomination, and at the pupil
level intelligence and school success. In addition, we may move variables from one
level to another by aggregation or disaggregation. Aggregation means that the
variables at a lower level are moved to a higher level, for instance by computing
the school mean of the pupils' intelligence scores. Disaggregation means moving
variables to a lower level, for instance by assigning to all pupils a variable that
reflects the denomination of the school they belong to. Lazarsfeld and Menzel
(1961) give a typology to describe the relations between different types of
variables, defined at different levels. I present them in the following scheme,
adapted from Swanborn (1981):

Level: 1 2 3    et cetera
___________________________________________________________________________
Variable absolute ⇒ analytical
type: relational ⇒ structural

contextual ⇐ global ⇒ analytical
relational ⇒ structural
contextual ⇐ global ⇒

relational ⇒
contextual ⇐

In this scheme, the lowest level (level 1) is usually formed by the individuals.
However, this is not always the case. Galtung (1969), for instance, defines roles
within individuals as the lowest level, and in longitudinal designs one can define
repeated measures within individuals as the lowest level (Goldstein, 1986, 1989.)
At each level, we have several types of variables. Global and absolute variables
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refer only to the level at which they are defined, without reference to any other
units or levels ('absolute variables' is simply the term used for global variables
defined at the lowest level). A pupil's intelligence would be a global or absolute
variable. Relational variables also refer to one single level, they describe the
relationships of a unit to the other units at the same level. Many sociometric
indices (such as indices of popularity of indices of the reciprocality of relationships)
are relational variables. Analytical and structural variables are measured by
referring to the subunits at a lower level. Analytical variables refer to the
distribution of an absolute or a global variable at a lower level, for instance to the
mean of a global variable from a lower level. Structural variables refer to the
distribution of relational variables at the lower level; many social network indices
are of this type. Constructing an analytical or relational variable from the lower
level data involves aggregation (indicated by ⇒): data on lower level units are
aggregated into data on a smaller number of higher level units. Contextual
variables, on the other hand, refer to the superunits; all units at the lower level
receive the value of a variable for the superunit to which they belong at the higher
level. This is called disaggregation (indicated by ⇐): data on higher level units are
disaggregated into data on a larger number of lower level units. The resulting
variable is called a contextual variable, because it refers to the higher level context
of the units we are investigating.

For the purpose of analyzing multilevel models, it is usually not important to
assign each variable its proper place in the scheme given above. The advantage is
conceptual; the scheme makes clear to which level the measurements properly
belong. Historically, multilevel problems have led to analysis approaches that
move all variables by aggregation or disaggregation to one single level of interest,
followed by an ordinary multiple regression, analysis of variance, or some other
`standard' analysis method. For example, an explicitly multilevel or contextual
theory in education is the so-called `frog pond' theory, which refers to the idea that
a specific individual frog may either be a small frog in a large pond or a large frog
in a small pond. Applied to education, this metaphor points out that the effect of
an explanatory variable such as `intelligence' on school career may depend a lot on
the average intelligence in the school. A moderately intelligent pupil in a highly
intelligent context may become demotivated and thus become an underachiever,
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while the same pupil in a considerably less intelligent context may gain confidence
and become an overachiever. Thus, the effect of an individual pupil's intelligence
depends on the average intelligence of the other pupils. A popular approach in
educational research to investigate `frog pond' effects has been to aggregate
variables into group means, and then to disaggregate these group means again to
the individual level. As a result, the data file contains both individual level
(absolute or global) variables and higher level (contextual) variables in the form of
the disaggregated group means. Cronbach (1976; cf. Cronbach & Webb, 1979) has
suggested to express the individual scores as deviations from their respective
group means, a procedure that has become known as centering around the group
mean, or group centering. Centering around the group means makes very explicit
that the individual scores should be interpreted relative to their group's mean.
Another advantage of centering around the group means is that the group-
centered individual deviation scores have a zero correlation with the disaggregated
group means, which has statistical advantages. However, a definite disadvantage
of centering around the group means is that the group-centered variables have no
longer a simple interpretation. I will not go into the problem of centering here; for
a thorough discussion of the conceptual and analytical implications of various
centering schemes I refer to Boyd and Iversen (1979), Iversen (1991), and the
discussion by Raudenbush (1989a, 1989b), Longford (1989b) and Plewis (1989).
However, the discussion of the `centering' issue makes clear that combining and
analyzing information from different levels within one statistical model is central
to multilevel modeling.

Analyzing variables from different levels at one single common level creates
two different sets of problems. One set of problems is statistical. If data are
aggregated, the result is that different data values from many subunits are
combined into fewer values for fewer higher level units. Information is lost, and
the statistical analysis looses power. On the other hand, if data are disaggregated,
the result is that a few data values from a small number of superunits are `blown
up' into values for a much larger number of subunits. Ordinary statistical tests
treat all these disaggregated data values as independent information from this
much larger sample. The proper sample size for these variables is of course the
number of higher level units. Using the higher number of disaggregated cases for
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the sample size leads to significance tests that reject the null-hypothesis far more
often than the nominal alpha level suggests. In other words: investigators come up
with a lot of spurious significances.

The other set of problems encountered is conceptual. If the analyst is not very
careful in the interpretation of the results, s/he may commit the fallacy of the
wrong level, which consists of analyzing the data at one level, and drawing
conclusions at another level. Probably the best known fallacy is the ecological
fallacy, which is interpreting aggregated data at the individual level. It is also
know as the `Robinson effect' after Robinson (1950). Robinson presents aggregated
data describing the relationship between the percentage of blacks and the
illiteracy level in nine geographic regions in 1930. The ecological correlation 
(correlation between the aggregated variables) at the region level is 0.95, but the
individual correlation between the absolute variables at the individual level is
0.20. Robinson concludes that in practice an ecological correlation is almost
certainly not equal to its corresponding individual correlation. This has
consequences the other way as well; drawing inferences at a higher level from
analyses performed at a lower level is just as misleading; this error is known as
the atomistic fallacy. An extensive typology of such fallacies is given by Alker
(1969). A different but related fallacy is known as `Simpson's Paradox' (see
Lindley & Novick, 1981). Simpson's paradox refers to the problem that completely
erroneous conclusions may be drawn if grouped data, drawn from heterogeneous
populations, are collapsed and analyzed as if they came from a single
homogeneous population.

A more general way to look at multilevel data is to investigate cross level
hypotheses, or multilevel problems. A multilevel problem is a problem that
concerns the relationships between variables that are measured at a number of
different hierarchical levels. For example, a common question is how a number of
individual and group variables influence one single individual outcome variable.
Typically, some of the higher level explanatory variables may be the aggregated
group means of lower level individual variables. The goal of the analysis is to
determine the direct effect of individual and group level explanatory variables,
and to determine if the explanatory variables at the group level serve as
moderators of individual-level relationships. If group level variables moderate
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lower level relationships, this shows up as a statistical interaction between
explanatory variables from different levels. In the past, such data were usually
analyzed using conventional multiple regression analysis with one dependent
variable at the lowest (individual) level and a collection of explanatory variables
from all available levels (Boyd & Iversen, 1979; Roberts & Burstein, 1980; Van
den Eeden and Hüttner, 1982). Since this approach analyzes all available data at
one single level, it suffers from the conceptual and statistical problems mentioned
above. Much research has been directed at developing more appropriate analysis
methods for this hierarchical regression model, and at clarifying the associated
conceptual and statistical issues.

1.1. Why Do We Need Special Multilevel Analysis
Techniques?

A multilevel problem concerns a population with a hierarchical structure. A
sample from such a population can be described as a multistage sample: first we
take a sample of units from the higher level (e.g., schools), and next we sample the
subunits from the available units (e.g., we sample pupils from the schools). In such
samples, the individual observations are generally not completely independent.
For instance, pupils in the same school tend to be similar to each other, because of
selection processes (e.g., some schools may attract primarily higher SES pupils,

while others attract more lower SES pupils) and because of the common history
they share by going to the same school. As a result, the average correlation
(expressed in the so-called intra class correlation) between variables measured on
pupils from the same school will be higher than the average correlation between
variables measured on pupils from different schools. Standard statistical tests lean
heavily on the assumption of independence of the observations. If this assumption
is violated (and in multilevel data this is usually the case) the estimates of the
standard errors of conventional statistical tests are much too small, and this
results in many spuriously `significant' results.

The problem of dependencies between individual observations also occurs in
survey research, when the sample is not taken at random but cluster sampling
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from geographical areas is used instead. For similar reasons as in the school
example given above, respondents from the same geographical area will be more
similar to each other than respondents from different geographical areas. The
result is again estimates for standard errors that are too small, and spurious
`significant' results. In survey research this is called a `design effect', and the
usual correction procedure is to compute the standard errors by ordinary analysis
methods, estimate the intra class correlation between respondents within clusters,
and to employ a correction formula to the standard errors (cf. Kish, 1987). Some of
these correction procedures are quite powerful (cf. Skinner, Holt & Smith, 1989).
As a matter of fact, these correction procedures could also be applied in multilevel
analysis. However, in most multilevel problems we have not only clustering of
individuals within groups, but we also have variables measured at all available
levels. Combining variables from different levels in one statistical model is a
different problem than estimating and correcting for design effects. Multilevel
models are designed to analyze variables from different levels simultaneously,
using a statistical model that includes the various dependencies.

1.2. Multilevel Theories

Multilevel problems must be explained by multilevel theories, an area that seems
underdeveloped compared to the advances made in the recently developed
modeling and computing machineries (cf. Van den Eeden, 1993). If there are
effects of the social context on individuals, these effects must be mediated by
intervening processes that depend on characteristics of the social context.
Multilevel models so far require that the grouping criterion is clear, and that
variables can be assigned unequivocally to their appropriate level. In reality,
group boundaries are sometimes fuzzy and somewhat arbitrary, and the
assignment of variables is not always obvious and simple. In multilevel problems,
decisions about group membership and operationalizations involve a wide range of
theoretical assumptions, and an equally wide range of specification problems for
the auxiliary theory (cf. Blalock, 1990). When the numbers of variables at different
levels are large, there is an enormous number of possible cross-level interactions.



8

Ideally, a multilevel theory should specify which variables belong to which level,
and which direct effects and cross-level interaction effects can be expected. Cross-
level interaction effects between the individual and the context level require the
specification of some process within individuals that causes those individuals to be
differentially influenced by certain aspects of the context. Attempts to identify
such processes have been made by, among others, Stinchcombe (1967), Hummel
(1972), and Erbring and Young (1979). The common denominator in these theories
is that they all postulate one or more psychological processes that mediate between
individual variables and group variables. Since a global explanation by `group
telepathy' is generally not acceptable, communication processes and the internal
structure of groups become important. This refers to the `structural variables'
mentioned earlier. In spite of their theoretical relevance, structural variables are
infrequently used in multilevel research (the program developed by Erbring and
Young to include sociometric structures in multilevel analysis is also seldom used,
possibly because it is not readily accessible to applied researchers.) Another
theoretical area that has been largely neglected by multilevel researchers is the
influence of individuals on the group. This is already visible in Durkheim's concept
of sociology as a science that focuses primarily on the constraints that a society can
put on its members, and disregards the influence of individuals on their society.

1.3. Models Described in This Book

This book treats two classes of multilevel models: multilevel regression models,
and multilevel models for covariance structures.

Multilevel regression models are essentially a multilevel version of the
familiar multiple regression model. As Cohen and Cohen (1983) and others have
shown, the multiple regression model is very versatile. Using dummy coding for
categorical variables, it can be used to analyze analysis of variance (ANOVA)-type
of models as well as the more usual multiple regression models. As a result the
multilevel regression model can be used in a wide variety of research problems. It
has been used extensively in educational research (cf. the special issues of the
International Journal of Educational Research, 1990, the Dutch Tijdschrift voor
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Onderwijsresearch also in 1990, and Journal of Educational and Behavioral
Statistics in 1995). Other applications have been in the analysis of longitudinal
and growth data (cf. Bryk & Raudenbush, 1987; Goldstein, 1989; DiPrete &
Grusky, 1990, Goldstein, Healy & Rasbash, 1994), the analysis of interview survey
data (cf. Hox, de Leeuw & Kreft, 1991; Hox, 1994), data from surveys with complex
sampling schemes with respondents nested within sampling units (Goldstein &
Silver, 1989), and data from factorial surveys and facet designs (Hox, Kreft &
Hermkens, 1991; Hox & Lagerweij, 1993). Raudenbush and Bryk have introduced
multilevel regression models in meta-analysis (cf. Raudenbush & Bryk, 1985,
1987; Hox & de Leeuw, 1994). Multilevel regression models for binary and other
non-normal data have been described by Wong and Mason (1985), Longford
(1988), Mislevy and Bock (1989) and Goldstein (1990). This book describes the
multilevel version of the usual multiple regression model at length in chapter 2,
and an extended example of analyses with the programs HLM, MLn and VARCL
in chapter 3. Chapter 4 gives examples of some special applications, such as
analysis of proportions and meta-analysis.

Multilevel covariance structure analysis (CSA) would constitute a very powerful
tool for the analysis of multilevel data. Quite a lot of fundamental work has been
done on multilevel factor and path analysis (cf. Goldstein and McDonald, 1988;
Muthén, 1989, 1990; McDonald & Goldstein, 1989). There are also some
applications, for instance Härnqvist, Gustaffson, Muthén, and Nelson (1992), Hox
(1993). However, as yet there is almost no specialized software to analyze
multilevel covariance structures; applications currently require using
experimental programs (such as BIRAM, McDonald, 1994) or running
conventional software for covariance structure analysis (e.g., Lisrel, EQS,
Liscomp) with unusual setups. The general statistical model for multilevel
covariance structure analysis is quite complicated. Chapter 5 in this book
describes a simplified statistical model proposed by Muthén (1990, 1994), and
explains how multilevel confirmatory factor and path models can be estimated
with conventional CSA software such as Lisrel.
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2. Multilevel Regression Models

2.1 The Basic Two-Level Regression Model

The multilevel regression model has become known in the research literature
under a variety of names, such as `random coefficient model' (de Leeuw & Kreft,
1986; Longford, 1993), `variance component model' (Longford, 1986), hierarchical
linear model' (Raudenbush & Bryk, 1986, 1992). The models described in these
publications are not exactly the same (especially when computational details are
considered,) but they are highly similar, and I will refer to them collectively as
`multilevel regression models'.

The full multilevel regression model assumes that there is a hierarchical data
set, with one single dependent variable that is measured at the lowest level and
explanatory variables at all existing levels. Conceptually the model can be viewed
as a hierarchical system of regression equations. For example: assume that we
have collected data in J schools, with data from a different number of pupils Nj in
each school. On the pupil level we have the dependent variable `school career
outcome' (Y) and the explanatory variable `SES' (X), and on the school level we
have the explanatory variable `school size' (Z). Accordingly, we can set up a
separate regression equation in each separate school to predict the dependent
variable Y by the explanatory variable X as follows:

Yij = β0j + β1j Xij + eij. (2.1)

In this regression equation β0j is the usual intercept, β1j is the usual regression
coefficient (regression slope), and eij is the usual residual error term. The subscript
j is for the schools (j=1..J) and the subscript i is for individual pupils (i=1..Nj). The
difference with the usual regression model is that we assume that each school is
characterized by a different intercept coefficient β0j and also a different slope
coefficient β1j. Just as in the ordinary multiple regression model, the random errors
eij in each school are assumed to have a mean of zero and a variance which is
specified as σj²; most multilevel models simply assume that the random error



11

variance is the same in all schools and specify this common error variance as σ².
In other words: the intercept and slope coefficients are assumed to vary across

the schools; for that reason they are often referred to as random coefficients.1 In
our example each school is characterized by its own specific value for the intercept
and the slope coefficient for the pupil variable `SES'. For pupils with the same
score on the explanatory variable SES, a school with a high value of the intercept
is predicted to lead to a higher school career outcome than a school with a low
value for the intercept. Similarly, the differences in the values for the slope
coefficient for SES can be interpreted to mean that the relationship between the
social background of the pupils and their predicted career is not the same in all
schools. Some schools have a high value for the slope coefficient of SES; in these
schools SES has a large effect on the school career and we might describe these
schools as `selective'. Other schools have a low value for the slope coefficient of
SES; in these schools SES has a small effect on the school career and we could
describe these schools as `egalitarian'.

Across all schools, the regression coefficients βj have a distribution with some
mean and variance. The next step in the hierarchical regression model is to predict
the variation of the regression coefficients βj by introducing explanatory variables
at the school level, as follows:

β0j = γ00 + γ01 Zj + u0j, (2.2)

and

β1j = γ10 + γ11 Zj + u1j. (2.3)

                                           
    1Of course they are not assumed to be completely random. We hope to be able to explain at
least some of this variation by introducing higher level variables. However, in most cases we
will not be able to explain all this variation, and as a result after introducing the higher level
variables there will be some random variation left unexplained. Hence the name 'random
coefficient model' for this type of model: the regression coefficients (intercept and slopes) are
assumed to have some amount of random variation between schools. The name 'random
component model' refers to the statistical problem of estimating the amount of this random
variation.
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Equation (2.2) states that the general career level of a school (the intercept β0j) can
be predicted by the school size (Z). Thus, if ß01 is positive, we state that the school
career outcome in large schools is higher than in small schools. Conversely, if ß01 is
negative, we state that the school career outcome in large schools is lower than in
small schools. The interpretation of equation (2.3) is more complicated. Equation
(2.3) states that the relationship (as expressed by the slope coefficient ß1j) between
the school career (Y) and the SES (X) of the pupil depends upon the school size (Z).
Whether a school is `selective' (high value for β1j) or `egalitarian' (low value for ß1j),
depends (at least partly) upon the school's size. If γ11 is positive, large schools tend
to be more selective than small schools, and if γ11 is negative, large schools are
more egalitarian than small schools. Thus, the school size acts as a moderator
variable for the relationship between school career and SES; this relationship
varies according to the value of the moderator variable. For a statistical discussion
on how to interpret differences between regression equations for different schools
see Aitkin and Longford (1986); more application oriented discussions are offered
in Kreft and de Leeuw (1991, 1993).

The u-terms u0j and u1j in equations (2.2) and (2.3) are (random) residual
error terms at the school level. The residual errors u.j are assumed to have a mean
of zero, and to be independent from the residual errors eij at the individual (pupil)
level. The variance of the residual errors u0j is specified as σ00, and the variance of
the residual errors u1j is specified as σ11. The covariance σ12 between the residual
error terms u0j and u1j is generally not assumed to be zero.

Note that in equations (2.2) and (2.3) the regression coefficients γ are not
assumed to vary across schools (consequently they have no subscript j to indicate
to which school they belong: they apply to all schools). Therefore they are referred
to as fixed coefficients, all between school variation left in the β coefficients after
predicting these with the school variable Zj is assumed to be residual error
variation, which is captured by the residual error terms uj (which therefore do
have subscripts j to indicate to which school they belong).

Our model with one pupil level and one school level explanatory variable can
be written as one single complex regression equation by substituting equations
(2.2) and (2.3) into equation (2.1). Rearranging terms gives:
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Yij = γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij + u1j Xij + u0j + eij (2.4)

The segment γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij in equation (2.4) contains all the fixed
coefficients; for this reason this is often called the fixed (or deterministic) part of
the model. The segment u0j + u1j Xij + eij in equation (2.4) contains all the random
error terms; for this reason this is often called the random (or stochastic) part of
the model. The term ZjXij is an interaction term that appears in the model as a
consequence of modeling the varying regression slope β1j of pupil level variable Xij

with the school level variable Zj. Thus, the moderator effect of Z on the relationship
between the dependent variable Y and X is expressed as a cross-level interaction.
The interpretation of interaction terms in multiple regression analysis can be
complex. In general, the substantive interpretation of the coefficients in models
with interactions is much simpler if the variables that make up the interaction are
expressed as deviations from their respective means. (Both the overall mean as the
group means will do. Since centering around the group means introduces its own
set of problems, I generally prefer to center around the overall mean. For a
discussion see Raudenbush 1989a, 1989b; Longford, 1989b, Plewis, 1989.) I
present an example of a cross-level interaction in section 2.5; for a thorough
discussion of interactions in multiple regression models see Jaccard, Turrisi and
Wan (1990) and Aiken and West (1991). Note that the random error term u1j is
connected to Xij. Since the error term u1j is multiplied by the explanatory variable
Xij, the resulting total error will be different for different values of Xij, a situation
which in ordinary multiple regression is called `heteroscedasticity'.1

As I explained in the introduction in chapter 1, multilevel models are needed
because with grouped data the observations in the same group are generally more
similar than the observations from different groups, which violates the assumption
of independence of all observations. This lack of independence can be expressed as

                                           
    1Put the other way around: the usual multiple regression model assumes 'homoscedasticity',
meaning that all the errors are independent of all explanatory variables. If this assumption is
not true, ordinary multiple regression does not work very well, which is one reason why
analyzing multilevel models with ordinary multiple regression programs does not work very
well either.
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a correlation coefficient: the intra class correlation. The methodological literature
contains a number of different formula's to estimate the intra class correlation ρ.
For example, if we use oneway analysis of variance to test if there is a significant
group effect, the intra class correlation is estimated by ρ = (MS(A)-
MS(error))/(MS(A)-(k-1)xMS(error)). Shrout and Fleiss (1979) give an overview of
other anova based formula's for different designs. The multilevel regression model
can also be used to estimate the intra class correlation. The model used for this
purpose is a model that contains no explanatory variables at all, the so-called
intercept-only model. This can be derived from equations (2.1) and (2.2) as follows.
If there are no explanatory variables X at the lowest level, equation (2.1) reduces
to:

Yij = β0j + eij. (2.5)

Likewise, if there are no explanatory variables Z at the highest level, equation
(2.2) reduces to:

β0j = γ00 + u0j. (2.6)

We find the single equation model by substituting (2.6) into (2.5):

Yij = γ00 + u0j + eij. (2.7)

We could also have found equation (2.7) by simplifying equation (2.4), removing all
terms that contain an X or Z variable. The model of equation (2.7) does not explain
any variance, it only decomposes the variance into two independent components:

σ², which is the variance of the lowest level errors eij, and σ00, which is the variance
of the highest level errors u0j. Using this model we can estimate the intra class
correlation ρ by the equation:

ρ = σ00 / (σ00 + σ²). (2.8)

The intra class correlation ρ is a population estimate of the variance explained by
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the grouping structure. Equation (2.8) simply states that the intra class correlation
is equal to the estimated proportion of group level variance compared to the
estimated total variance. (Note that the intra class correlation is an estimate of the
proportion of explained variance in the population. The amount of explained
variance in the sample is the correlation ratio η² (eta-squared), cf. Hays, 1973).

2.2 Computing Parameter Estimates and Analysis Strategy

In general there will be more than one explanatory variable at the lowest level and
also more than one explanatory variable at the highest level. Assume that we have
P explanatory variables X at the lowest level, indicated by the subscript p (p=1..P).
Likewise, we have Q explanatory variables Z at the highest level, indicated by the
subscript q (q=1..Q). Then, equation (2.4) becomes the more general equation:

Yij = γ00 + γp0 Xpij + γ0q Zqj + γpq ZqjXpij + upj Xpij + u0j + eij (2.9)

The errors at the lowest level eij are assumed to have a normal distribution with a
mean of zero and a common variance σ² in all groups. The u-terms u0j and upj in
equation (2.9) are the error terms at the highest level. They are assumed to be
independent from the errors eij at the individual level, and to have a multivariate
normal distribution with means of zero. The variance of the residual error u0j is
the variance of the intercepts between the groups; it is specified as σ00. The
variances of the residual errors upj are the variances of the slopes between the
groups; they are specified as σpp. The covariances between the residual error terms

σp'p" are generally not assumed to be zero; they are collected in the higher level
variance/covariance matrix Σ.1

The statistical theory behind the multilevel regression model is complex. On the
basis of the observed data, we want to estimate the parameters of the multilevel
regression model: the regression coefficients and the variance components. The

                                           
    1We may attach a subscript to Σ to indicate to which level it belongs. As long as there is no
risk of confusion, I will use the simpler notation without the subscript.



16

estimators currently used in multilevel regression analysis are Maximum
Likelihood (ML) estimators. Maximum Likelihood estimators estimate the
parameters of a model by providing estimates for the population values that
maximize the so-called Likelihood Function: the function that gives the probability
of observing the sample data, given the current parameter estimates. To put it
simply, ML estimates are those parameter estimates that maximize the
probability of finding the sample data that we have actually found.

Maximum Likelihood procedures produce standard errors for most of the
estimates. The standard errors can be used for significance testing; the test
statistic Z = parameter / (st.error param.) can be referred to the standard normal
distribution to establish a p-value for the null-hypothesis that in the population
that specific parameter is zero. This test is known as the Wald test (Wald, 1943).
The standard errors are asymptotic, i.e. they are valid for large samples. As usual,
it is not precisely known when a sample is large enough to be confident about the
precision of the estimates.1 In ordinary regression analysis, a common rule of
thumb is to require ten observations for each regression coefficient that is
estimated. In multilevel regression, we should remember that higher level
coefficients and variance components are estimated on the sample of groups,
which is often not very large. Procedures for power analysis and some suggestions
for decisions concerning sample sizes are given by Snijders and Bosker (1993).

It should be noted that the p-values produced by HLM may differ from those
obtained from other programs. Most multilevel analysis programs produce as part
of their output parameter estimates and asymptotic standard errors for these
estimates, all obtained from the maximum likelihood estimation procedure. The
usual significance test in a maximum likelihood is the Wald test: a Z-test of the
form Z=(estimate)/(standard error of estimate) where Z is refered to the standard
normal distribution. Bryk and Raudenbush (1992, p. 50), refering to a simulation
study by Fotiu (1989), argue that for the fixed effects it is better to refer this ratio

                                           
    1Since the standard errors are asymptotic, the p-values are in practical situations always
an approximation. Given this fact, I prefer presenting standard errors rather than 'exact' p-
values, and interpreting as statistically 'significant' those estimates that exceed two times
their standard error. If finer distinctions are desired, estimates that exceed three times their
standard error can be labeled as 'highly significant.'
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to a t-distribution on J-q-1 degrees of freedom. Likewise, they argue that the Z-test
is not appropriate for the variances, because the sampling distribution of variances
is skewed (Bryk and Raudenbush, 1992, p. 47, 55). Instead, they propose to use a
chi-square test of the residuals. The p-values produced by HLM are based on these
tests rather than the more usual Wald tests. When the number of groups J is
small, the difference with the usual procedure may be important.

The Maximum Likelihood procedure also produces a statistic called the
deviance, which indicates how well the model fits the data. In general, models with
a lower deviance fit better than models with a higher deviance. If two models are
nested (which means that a specific model can be derived from a more general
model by removing parameters from the general model) the difference of the
deviances for the two models has a chi-square distribution with degrees of freedom
equal to the difference in the number of parameters estimated in the two models.
This can be used to perform a formal chi-square test to test whether the more
general model fits significantly better than the simpler model. The chi-square test
of the deviances can also be used to good effect to explore the importance of
random effects, by comparing a model that contains these effects with a model that
excludes them. If the models to be compared are not nested models, the principle
that models should be as simple as possible (theories and models should be
parsimonious) indicates that we should generally stick with the simpler model.

Two different varieties of Maximum Likelihood estimation are currently used
in the available software for multilevel regression analysis. One is called Full
Maximum Likelihood (FML); in this method both the regression coefficients and
the variance components are included in the likelihood function. The other method
is called Restricted Maximum Likelihood (RML), here only the variance
components are included in the likelihood function. The difference is that FML
treats the estimates for the regression coefficients as known quantities when the
variance components are estimated, while RML treats them as estimates that
carry some amount of uncertainty (Bryk and raudenbush, 1992; Goldstein, 1995).
Since RML is more realistic, it should, in theory, lead to better estimates,
especially when the number of groups is small (Bryk & Raudenbush, 1992).
However, in practice, the differences between the two methods are not very large
(cf. Kreft, De Leeuw & Kim, 1989). FML has two advantages over RML: the
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computations are generally easier, and since the regression coefficients are
included in the likelihood function, the overall chi-square test can be used to test
for differences between two models that differ only in the fixed part (the regression
coefficients). With RML only differences in the random part (the variance
components) can be tested with the overall chi-square test.

Computing the Maximum Likelihood estimates requires an iterative
procedure. At the beginning the computer program generates reasonable starting
values for the various parameters (in multilevel regression analysis these are
usually based on the simple single-level regressions). In the next step, an
ingenious computation procedure tries to improve upon the starting values, and
produces better estimates. This second step is repeated (iterated) many times.
After each iteration, the program inspects how much the estimates actually
changed compared to the previous step. If the changes are very small, the program
concludes that the estimation procedure has converged and that it is finished.
Using these programs, we generally take the computational details for granted.
However, sometimes computational problems do occur. A problem common to
programs using an iterative Maximum Likelihood procedure is that the iterative
process is not guaranteed to stop. There are models and data sets for which the
program goes through an endless sequence of iterations, which can only be
stopped by reaching for the <reset> switch on the computer. Because of this, most
programs set a built-in limit to the maximum number of iterations. If convergence
is not reached within this limit, the computations can be repeated with a higher
limit. If the computations do not converge after a large number of iterations, we
suspect that they may never converge.1 The problem is how one should interpret a
model that does not converge. The usual interpretation is that a model for which
convergence cannot be reached is a bad model, using the simple argument that if
estimates cannot be found this disqualifies the model. But the problem may also
lie with the data. Especially with small samples the estimation procedure may fail
even if the model is valid. Also, it is possible that, if only we had a better
computation procedure, we could find acceptable estimates. Still, experience shows

                                           
    1Some programs allow the analyst to monitor what happens during iterations, so one can
observe whether the computations seem to be going somewhere, or are just moving back and
forth without improving the likelihood function.
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that if a program does not converge with a data set of reasonable size, the problem
often is a badly misspecified model. In multilevel regression, nonconvergence often
occurs when we try to estimate too many random (variance) components that are
actually close or equal to zero. The solution is to simplify the model by leaving out
some random components (generally the results from the non-converged solution
provide an indication which random components can be omitted.)

The available multilevel regression programs all produce estimates for the
fixed coefficients gamma, their standard errors, estimates for the variance
components σ² and σp'p", their standard errors, and the deviance. In addition, the
various programs offer more analysis options. Some of the options offered by the
programs HLM, VARCL and MLn will be compared in the next chapter.

Note that the number of parameters in a multilevel model is rather large. If there
are P explanatory variables at the lowest level and Q explanatory variables at the
highest level, the number of estimated parameters in the full model implied by
equation (2.9) is given by the following list:

parameters:     number:

intercept 1
lowest level error variance 1
slopes for the lowest level predictors P
highest level error variances for these slopes P
highest level covariances of the intercept with all slopes P
highest level covariances between all slopes P(P-1)/2
slopes for the highest level predictors Q
slopes for cross level interactions P×Q

The ordinary single level regression model would estimate only the intercept, one
error variance, and P+Q regression slopes. Clearly, even with a modest number of
explanatory variables at both levels, equation (2.9) implies a very complicated
model. Usually, we do not want to estimate the complete model, because this is
likely to get us into computational problems, and also because it is very difficult to
interpret such a complex model. Fortunately, we do not have to estimate the
complete model. All programs allow us to specify which regression coefficients are
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assumed to vary and which not, and to include only a few selected cross level
interactions. So, generally we will limit ourselves to parameters that have proven
their worth in previous research, or are interesting in view of our theoretical
problem.1

If we have no strong theories, we can use an exploratory procedure to select a
model. An attractive procedure is to start with the simplest possible model, the
intercept-only model, and to include the various types of parameters step by step.
At each step, we inspect the results to see which parameters are significant, and
how much residual error is left at the two distinct levels. The different steps of
such a selection procedure are given below.

Step 1:
Analyze a model with no explanatory variables. This model, the intercept-only
model, is given by the model of equation (2.7), which is repeated here:

Yij = γ00 + u0j + eij . (2.7)

The intercept-only model is useful because it gives us an estimate of the intra-class
correlation by applying equation (2.8), which is repeated here:

ρ = σ00 / (σ00 + σ²) . (2.8)
The intercept-only model also gives us the value of the deviance, which is a
measure of the degree of mis-fit of the model (cf. McCullagh & Nelder, 1989).

Step 2:
Analyze a model with all lower level explanatory variables fixed. This means that
the corresponding variance components of the slopes are fixed at zero. This model
is written as:

                                           
    1VARCL provides the option to restrict all covariances between random slopes to zero. (In
HLM and MLn this can be accomplished by restricting them all one by one). This simplifies
the model, and speeds up computations. In general, it is advisable to test the assumption that
these covariances are zero by comparing the deviances of the models with and without
covariances, which can be tested formally using a chi-square test with P(P-1)/2 degrees of
freedom.
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Yij = γ00 + γp0 Xpij + u0j + eij . (2.10)

In this step we assess the contribution of each individual explanatory variable. If
we use the FML estimation method, we can test the improvement of the final
model chosen in this step by computing the difference of the deviance of this model
and the previous model (the intercept-only model). This difference approximates a
chi-square variate with as degrees of freedom the difference in the number of
parameters of both models. In this case the degrees of freedom simply equal the
number of explanatory variables added in step 2.

Step 3:
Assess whether any of the slope of any of the explanatory variables has a
significant variance component between the groups. The model to consider is:

Yij = γ00 + γp0 Xpij + upj Xpij + u0j + eij . (2.11)

Testing random slope variation is best done on a one-by-one basis. Variables that
were omitted at the previous step may be analyzed again at this step: it is quite
possible for an explanatory variable to have no significant mean regression slope
(as tested in step 2) but to have a significant variance component for this slope.
After deciding which slopes have a significant variance between groups, we can
add all the variance components in a final model and use the chi-square test based
on the deviances to test whether the final model of step 3 fits better than the final
model of step 2. (Since we are now introducing changes in the random part of the
model, the chi-square test can also be used with RML estimation. When counting
the number of parameters added, remember that step 3 also includes the
covariances between the slopes!)

Step 4:
Add the higher level explanatory variables, as in equation (2.12):

Yij = γ00 + γp0 Xpij + γ0q Zqj + upj Xpij + u0j + eij . (2.12)
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This allows us to examine whether these variables explain between group
variation in the dependent variable. Again, if we use FML estimation, we can use
the global chi-square test to formally test the improvement of fit.

Step 5:
Add cross-level interactions between explanatory group level variables and those
individual level explanatory variables that had significant slope variation in step
3. This leads to the full model already formulated in equation (2.9):

Yij = γ00 + γp0 Xpij + γ0q Zqj + γpq ZqjXpij + upj Xpij + u0j + eij (2.9)

Again, if we use FML estimation, we can use the global chi-square test to formally
test the improvement of fit.

In each step, we decide which regression coefficients or (co)variances to keep on
the basis of the significance tests, the change in the deviance, and changes in the
variance components. Specifically, if we introduce explanatory variables in step 2,
we expect that the lowest level variance σ² goes down. If the composition of the
groups with respect to the explanatory variables is not exactly identical for all
groups, we expect that the higher level variance σ00 also goes down. Thus, the
individual level explanatory variables explain part of the individual and part of
the group variance. The higher level explanatory variables added in step 4 can
explain only group level variance. It is tempting to compute the analogue of a
multiple correlation coefficient to indicate how much variance is actually
explained at each level (cf. Bryk and Raudenbush, 1992). However, this `multiple
correlation' is at best an approximation, and it is quite possible for it to become
smaller when we add explanatory variables (something that cannot happen with a
real multiple correlation.) For a discussion of the problems and more sophisticated
procedures see Snijders and Bosker (1994).

If we use an exploratory procedure to arrive at a `good' model, there is of
course always the possibility that some decisions that have led to this model are
based on chance. If the sample is large enough, we may split it in two, use one half
for the model search, and the other for cross-validation. See Camstra and
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Boomsma (1992) for a review of cross-validation procedures.

2.3 An Example of a Simple Two-Level Regression Model

The example below concerns the effect of interviewers and respondents on survey
results. In survey research, the usual procedure is that there are a number of
interviewers and that each interviewer questions many respondents. Thus, both
interviewer and respondent characteristics can have an effect on the survey
results, and much methodological research has been spent on the question how
much interviewer and respondent bias is present in social survey data. Since
respondents are nested within interviewers, in methodological terms this is clearly
a multilevel problem. The specific example investigates how much interviewer and
respondent characteristics influence the speed of interviewing (i.e., how many
questions have been asked and answered in a given time period).

The data are from 515 respondents, interviewed by 20 interviewers. The
dependent variable is the speed of interviewing, measured by the number of
questions answered per minute. Leaving out nonsignificant variables, we have
three explanatory variables at the respondent level: `tel' (whether the respondent
was interviewed by telephone instead of face-to-face), `age' (the respondents age in
years), and `lonely' (loneliness measured by a multi-item scale developed by de
Jong-Gierveld, 1985). There are four explanatory variables at the interviewer
level: `training' (amount of previous interviewer training), `pref.tel' (interviewer
prefers telephone to face-to-face method), `extroversion' (interviewer extroversion),
and `soc.ass.' (interviewer social assurance). There is one significant cross level
interaction: the interaction between the variables `tel' and `soc.ass.' The results are
reported in Table 2.1. below:

Table 2.1 Multilevel regression results interviewer/respondent dataa

_________________________________________________________________
Fixed Part: Regression coefficients: p-value
Respondent level

intercept 1.43
tel .30 .00
age -.01 .00
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lonely -.04 .00
Interviewer level

training .25 .01
pref.tel .27 .00
extro .02 .00
soc.ass .01 .15

Interaction
tel × soc.ass .01 .05

Random Part: Variance components: p-value
σ² .52
σ²intercept .03 .00
σ²tel .01 .00

Deviance:   1155
_________________________________________________________________
ap-values based on approximate standard errors provided by VARCL.

The interpretation of Table 2.1 is much like that of an ordinary multiple
regression model. Interviews are faster with a telephone interview, and with
younger and less lonely respondents. Trained interviewers, interviewers with
preference for using the telephone, and extroverted interviewers are also longer.
The effect of the interviewers' social assurance should be interpreted together with
the effect of the interaction; careful inspection of the regression equation leads to
the conclusion that in the face-to-face interview socially sure interviewers take
more time for the interview.

2.4 Standardizing Regression Coefficients
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The coefficients in Table 2.1 are unstandardized regression coefficients. To
interpret them properly, we should take the scale of the explanatory variables into
account. In multiple regression analysis (and structural models, for that matter)
coefficients are often standardized because that facilitates the interpretation when
one wants to compare the effects of different coefficients within one sample. (If the
goal of the analysis is to compare different samples to each other, one should
always use unstandardized coefficients!). To standardize the regression coefficients
in Table 2.1, one could standardize all variables before putting them into the
multilevel analysis. It is also possible to derive the standardized regression
coefficients from the unstandardized coefficients:

      (unstand. coeff.) × (st.dev. explanatory var.)

standard coefficient = _________________________________________ (2.13)
   st. dev. dependent var.

The variables in the interviewer example have quite different scales. For example:
using telephone instead if face-to-face methods is indicated by a 0-1 dummy
variable (0=telephone, 1=face-to-face) with a standard deviation of .50, while age is
measured in years with a standard deviation of 17.71. If we apply formula (2.13) to
the coefficients in Table 2.1 we get the standardized results in Table 2.2:

If we inspect the standardized regression coefficiens in Table 2.1, `extroversion'
becomes the most important explanatory variable. Also `age' and `loneliness,'
which seem negligeable in their unstandardized form in Table 2.1, now look fairly
important. The reason is that these explanatory variables have a larger scale
range. When the set of explanatory variables contains variables of widely different
scales, reporting the standardized coefficients in addition to the raw coefficients
helps the interpretation. In conventional multiple regression, this is practically
standard practice. In multilevel regression, where the standard software does not
automatically provide standardized coefficents, they are usually not reported. If
we use equation (2.13) to calculate standardized coefficients, we should realize
that the variance components still refer to the unstandardized coefficients. If we
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need variance components for standardized coefficients, we must use the
standardized variables in the analysis.

Table 2.2 Interviewer/respondent standardized coefficients
_________________________________________________________________

    standardized
Fixed Part: regression coefficients: p-value
Respondent level

tel .33 .00
age -.22 .00
lonely -.12 .00

Interviewer level
training .16 .01
pref.tel .28 .00
extro .36 .00
soc.ass .13 .15

Interaction
tel × soc.ass .06 .05

_________________________________________________________________

2.5 Interpreting Interactions

Whenever there are interactions in a multiple regression analysis (whether these
are cross-level interactions in a multilevel regression analysis or interactions in an
ordinary regression analysis does not matter) there are two important technical
points to be made. Both stem from the methodological principle that in the
presence of a significant interaction the effect of the interaction variable and the
direct effects of the explanatory variables that make up that interaction must be
interpreted together as a system (Jaccard, Turrisi & Wan, 1990, Aiken & West,
1992).

The first point is that if the interaction is significant, it is best to include both
direct effects in the regression too, even if they are not significant.

The second point is that in a model with an interaction effect, the regression
coefficients of the simple variables carry a different meaning than in a model
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without this interaction effect. If there is an interaction, then the regression
coefficient of one of the direct variables is an estimate of the regression in the case
that the other variable that is involved in the interaction is equal to zero, and vice
versa. As a result, if for one direct variable the value `zero' is widely beyond the
range of values that have been observed (as in age varying from 18-55), or if the
value `zero' is in fact impossible for that variable (as in the social assurance scale
where scores have a possible range from 14-98), the regression coefficient for the
other variable has no substantive interpretation. In many such cases, the
regression coefficient for at least one of the variables making up the interaction
will be very different from the corresponding coefficient in the model without
interaction. This change does not mean anything. One remedy is to take care that
the value `zero' is meaningful and actually occurs in the data. One can accomplish
this by centering both explanatory variables around their overall mean.1 After
centering, the value `zero' refers to the mean of the centered variable; in this case
the regression coefficients do not change when the interaction is added to the
model. When the explanatory variables are centered, the regression coefficient of
one of the variables in an interaction can be interpreted as the regression
coefficient for individuals with an `average' score on the other variable. If all
explanatory variables are centered, the intercept is equal to the grand mean of the
dependent variable.

In practice, to interpret an interaction, it is helpful to write out the regression
equation for one explanatory variable for various values of the other explanatory
variable. When both explanatory variables are continous, we write out the
regression equation for the lower level explanatory variable, for a choice of values
for the explanatory variable at the higher level. Possible choices are the mean,
maximum and minimum, or the median and the 25th and 75th percentile. A plot
of the regression lines generally clarifies the meaning of the interaction.

In the interviewing example there is one cross level interaction in the model
between `telephone condition' and `social assurance.' The telephone condition-

                                           
    1Standardizing the explanatory variables has the same effect. In that case I recommend not
to standardize the interaction because that makes it difficult to compute predictions or plot
interactions. Standardized regression weights for the interaction term can always be
determined with equation (2.13).
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variable is scored 0=face-to-face and 1=telephone: the value `zero' clearly has an
empirical interpretation here. Centering is not needed here. Since in this example
centering would refer to the `average method used', an ambiguous concept at best,
centering is not attractive either. Thus, the regression coefficient b=.01 (in Table
2.1) for `social assurance' refers to the face-to-face situation. In the telephone
situation this regression coefficient becomes .01+1*.01=.02 (the regression
coefficient plus the number implied by the interaction when tel=1). Social
assurance is measured on a 14-item scale with items scored 1-7; theoretically the
scores could vary from 14 to 98, but in fact the range in the sample is from 41 to 78
with a mean of 61.76. In this case centering is attractive; if we use centering the
value of the regression coefficient for the telephone condition refers to the situation
where we use interviewers of average social assurance. In Table 2.1 `social
assurance' was in fact centered around its mean value.

Another way to make interactions easier to interpret is to plot the regression
slopes for one of the explanatory variables for some values of the other. In this
case, since `tel' has only two values, we plot the regression slope of `social
assurance' for tel=0 and for tel=1. Figure 2.1 below shows this interaction; for
interviewers with a low social assurance there is almost no difference in speed
between the face-to-face and the telephone condition. The more social assurance
the interviewers have, the longer the interview takes, but only in the face-to-face
condition.



29



30

3. Working with HLM, VARCL and MLn

The three programs that are currently the most popular programs for analyzing
the multilevel regression model are HLM (Bryk, Raudenbush, & Congdon, 1994),
VARCL (Longford, 1990), and ML3/MLn (Prosser, Rasbash & Goldstein, 1991;
Rasbash & Woodhouse, 1995). To highlight both the similarities and the
differences between these programs, and to provide some feeling for how
multilevel analyses may proceed, this chapter provides a systematic analysis of a
small data set with the programs HLM, VARCL, and MLn. In theory, each
program should lead to the same conclusion. In practice, this need not be the case.
There are small differences in the estimates produced by the programs (cf. Kreft et
al., 1990) that might turn out to be important in fitting models to real data. The
programs and their users' guide all use a different notation. For the sake of
consistency, I use the notation introduced in the previous chapter, and only briefly
discuss the differences between this notation and that of the specific program
being discussed. The programs also differ in the layout and the amount of
information given in the output. Again, I will display the results in a standard
format, and briefly point out important differences with the computer output.
Finally, the programs differ sharply in the extra features offered to the analyst for
exploring the data set. In the analysis of our example data, I have not tried to
follow exactly the same procedure (for instance the exploratory procedure outlined
in chapter 2) with each program. Instead, I have tried to follow a procedure that
feels `natural' given the specific program used and its particular features. This
approach has the added advantage that it provides some sense of the differences
between the programs in `look and feel.'

The example data were collected by Van der Wolf (cf. Hox & de Leeuw, 1986).
In this study, 681 pupils from 29 classes were questioned at the beginning of the
school year (pretest), and again at the end of the school year (post test).  After
removal of all cases with missing values, we have a data set which consists of 428
pupils in 28 classes. The dependent variable is `pupil loneliness', measured at the
end of the school year. There are four explanatory variables at the pupil level, all
measured at the beginning of the school year: X1=pupil gender, X2=repeat (how
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many times a pupil had to repeat a class), X3=ethnicity (parent not Dutch), and
X4=loneliness pretest. There are three class level variables, all three teacher
characteristics: Z1=teacher gender, Z2=teacher experience, and Z3=teacher having
taken extra postgraduate courses. In the remainder of this chapter, the equations
use the X's and Z's, and the text uses the full variable names.

Since HLM is the easiest program to use, and MLn the most difficult, with
VARCL lying in between, the first analysis uses HLM, the second VARCL, and the
last MLn.

3.1 HLM Analysis of the Example Data1

HLM (Bryk, Raudenbush & Congdon, 1994) is a set of related programs for 2-level
and 3-level analysis, called HLM/2L and HLM/3L respectively, and a special
program called VKHLM that can be used for meta-analysis (cf. section 4.1). The
HLM output contains the parameter estimates, their standard errors, the
(co)variances at the two levels, and the deviance. For most of the parameter
estimates HLM provides p-values as an indicator for their significance.
Furthermore, the variance in the βj coefficients is partitioned into sampling
variance and true residual parameter variance, the latter can in principle be
explained by second level variables. HLM produces estimates of the `parameter
reliability', which is the proportion of true parameter variance in each parameter,
and the corresponding p-value for the null-hypothesis that the true parameter
variance of a specific βj is zero. As noted in section 2.2, HLM has a special
approach to estimating the p-values, which may make a noticeable difference
when the number of groups is small.

Our example data have two levels, with explanatory variables at both levels.
Chapter Two presents the basic two-level regression model for one explanatory
variable at each level (equation 2.1). The model was written as:

Yij = β0j + β1j Xij + eij (3.1)

                                           
    1The analysis reported here uses HLM/L2 for two levels. HLM/L3 for three levels has more
options, especially to test the assumptions of the model. See Bryk et al., 1994, for details.
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for the first (lowest) level, and the intercept β0j and the regression slope β1j were
written as linear regression functions of the second (higher) level explanatory
variable Z:

β0j = γ00 + γ01 Zj + u0j, (3.2)

β1j = γ10 + γ11 Zj + u1j. (3.3)

Substitution of (3.2) and (3.3) into (3.1) gives the one-equation version of the
model:

Yij = γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij + u1j Xij + u0j + eij (3.4)

The standard HLM notation differs from this notation. The notation used in the
HLM manual (Bryk et al., 1994) closely follows the notation in Bryk and
Raudenbush (1992). The equations take the form:

Yij = β0j + β1jXij + rij (3.5)

for the individual level, which HLM calls the unit level, and

β0j = γ00 + γ01 Zj + U0j, (3.6a)

β1j = γ10 + γ11 Zj + U1j. (3.6b)

for the group level.1 The intercept βj0 is called the base in HLM's terminology. The
random error rij, which is our eij in equation 3.1, is by default assumed to have the
same variance in all groups, an assumption which in HLM can be relaxed. The
variances and covariances of the beta's are in the covariance matrix T (Tau), which
is Σ (sigma) in our notation of chapter two. HLM produces rather voluminous
output, including the starting values for the computational procedure. (Sometimes

                                           
    1The earlier version of HLM (Bryk et al., 1988) used a slightly different notation in the
manual, with the symbol theta instead of gamma in the second level regression equation.
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these values may be of interest in their own right, but generally they can be
ignored.)

As mentioned in the introduction of this chapter, I will use the notation introduced
in chapter two, rather than the different notations used by each program.

In the general multilevel regression model for our example data, the intercept
and the regression coefficients of the four pupil level variables vary at the class
level. Thus, the pupil level model is:

Yij = β0j + β1jX1ij + β2jX2ij + β3jX3ij + β4jX4ij + eij. (3.7)

All regression coefficients β are assumed random, and the class level model which
models them using the teacher variables Z is:

β0j = γ00 + γ01Z1j + γ02Z2j + γ03Z3j + u0j (3.8a)

β1j = γ10 + γ11Z1j + γ12Z2j + γ13Z3j + u1j (3.8b)

β2j = γ20 + γ21Z1j + γ22Z2j + γ23Z3j + u2j (3.8c)

β3j = γ30 + γ31Z1j + γ32Z2j + γ33Z3j + u3j (3.8d)

β4j = γ40 + γ41Z1j + γ42Z2j + γ43Z3j + u4j (3.8e)

HLM follows the two-equation notation of (3.5) and (3.6). To start the HLM
analysis, we must prepare two data files: one containing the pupil level data, and
one containing the class level data. Both files must be sorted on a class
identification variable, which HLM uses to link the two data files. When the raw
data have been read in and the variables have been named, HLM asks whether
the variable names and sufficient statistics should be saved in a so-called
`sufficient statistics file'. Since this makes subsequent runs faster, creating a
sufficient statistics file is a good first step in an HLM analysis. HLM also requires
a default file which sets some program defaults. Bryk et al. (1988) suggest
speeding up the program by setting the maximum number of iterations to 10 for
exploratory analyses, and to a much higher maximum for the final model. As Kreft
et al. (1990) show, a maximum of 10 iterations is often too small for programs that,
like HLM, use the EM algorithm. In our analyses, we have set the maximum
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number of iterations at 10, as recommended by Bryk et al (1988). When
convergence is not reached after 10 iterations, the model is examined, and if it
looks interesting, follow up analyses are done with the maximum number of
iterations set much higher (e.g., at 100).

After reading in the data, HLM prompts the researchers with the options:

Do you wish to:
Examine means, variances, chi-squared, etc?
Specify an HLM model?
Define a new outcome variable?
Exit?

The option `examine means, variances, chi-squared, etc.?' is useful if researchers
want to explore the data before actually fitting a hierarchical model. Choosing this
option provides us with the following information:

Table 3.1 Preliminary HLM analysis, outcome variable Lonely Posttest
____________________________________________________________________

ANOVA
Mean estimate of

Potential univariate variance in
independent regression regression
variable: coefficient: coefficient Reliability Chi-square   K

Means -.00065 .32686 .86263 181.0216 28
Pup.gender -.33575 .12143 .37488 42.80946 27
Repeat .32611 est < 0 18.20512 26
Ethnic .39092 est < 0 23.71305 28
Lonely pre .69961 .00190 .02370 37.03086 28
____________________________________________________________________

The information from the preliminary analysis in Table 3.1 is based on simple
univariate analyses of variance and single level regressions. Since these are only a
rough indication of what we may expect to find in a subsequent multilevel
analysis, we should not look for fine distinctions here. The chi-square tests give no
p-value, which, given the approximate nature of these single level tests, is
probably just as well. To interpret these figures, it is useful to know that when the
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null-hypothesis is true, the expected value of a chi-square variate is approximately
equal to the number of degrees of freedom, which is K-1 (the number of groups
minus one); the number of groups (K) is also given in Table 3.1. Using this fact, we
see that there is clear evidence of significant between group variation in the
intercepts (HLM calls these the means: the relevant chi-square is 181.0 with 28
degrees of freedom), and some evidence of significant between group variation in
the slope coefficient for pupil gender (chi-square is 42.8 with 27 degrees of
freedom).

The variation in the slope coefficient for the loneliness pretest is probably not
significant. The column under `reliability' gives an estimate of the proportion true
parameter variance (as opposed to sampling variance) in the random coefficients.
The proportion of reliable variance in the means is estimated as 0.86, and in the
slopes for pupil gender as 0.37. The proportion of reliable variance in the slopes for
the loneliness pretest is estimated as 0.02, which is very small, although it could
still turn out to be significant when a multilevel model is computed. The variance
estimates for the regression coefficients of `repeat' and `ethnic' are negative, with
chi-square values lower than the corresponding number of degrees of freedom; in
this case the reliability estimate is not computed. The interpretation of these
results is that these regression coefficients have zero variance. Consequently,
when we continue our analysis and specify a multilevel regression model, we can
specify these regression slopes as fixed, instead of random.

After this preliminary analysis, we specify a multilevel (hierarchical)
regression model. The first model fitted is the `intercept only' model, which models
the intercept as random, but has no explanatory variables at any level. The within
class model is:

yij = β0j + eij, (3.9)

and the between class model is:

β0j = γ00 + uoj. (3.10)

This model contains only one gamma (the intercept γ00), and two variance
components: the variance of u0j, which is σ00 (the HLM output gives this as the
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element base*base in the covariance matrix Tau, which in this case has only one
element), and the variance of the eij, which is the common within group variance σ²
(sigma squared). For the example data the intercept variance is 0.32, and sigma
squared is 0.72. This implies that the between group variance of the intercept is
(within rounding errors) 32% of the total variance. Another way to put this is that
the intra class correlation is estimated as 0.32.

The first substantively interesting HLM model employs all four variables at
the pupil level, but no variables at the teacher level. The within class model is:

yij=β0j + β1jXij1 + β2jXij2 + β3jXij3 + β4jXij4 + eij (3.11)

By default HLM assumes that all regression coefficients in equation (3.11) have
random variation. Thus, the between class model for all beta's is:

βpj = γp0 + upj (3.12)

We have a total of five gamma coefficients, one for the intercept of the within class
model, and one for the slope of each of the four explanatory variables (X1 to X4) in
the within class model. We also have five error terms upj at the class level and the
usual error term eij at the individual pupil level.

Before the calculations start, HLM asks whether the explanatory variables
should be centered around the class means. To keep the results comparable to the
other programs, we have not used this option. If explanatory variables at the
individual level are not explicitly declared as fixed, HLM considers them by
default to be random. Thus, all regression coefficients in equation (3.11) are
assumed by default to be random, which means that all error terms upj in equation
(3.12) are assumed to be non-zero. For this model, HLM did not converge in 10
iterations. It did also not converge in 30 or 100 iterations.

As I mentioned earlier, if the numerical estimation procedure does not
converge, this is often a sign that something is wrong with the model. A good
advice in such cases is to change the model into a model with fewer random
parameters. As a matter of fact, the non-converged (thus: inaccurate) multilevel
estimates of the variance components for the regression coefficients and their
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associated p-values in Table 3.2 below confirm the conclusion from the preliminary
analyses in Table 3.1, that the slopes (regression coefficients) of the pupil level
variables `repeat' and `ethnic' may be considered identical in all classes (fixed).

Table 3.2. HLM model with pupil variables only, results after 100 and between
parentheses results after (10) iterations.
___________________________________________________________________________
for:  gamma   p  var. of u   p
intercept .06 (.05) .35 (.36) .26 (.24) .00 (.00)
gender -.15 (-.15) .07 (.06) .07 (.03) .09 (.10)
repeat .16 (.15) .08 (.12) .03 (.05) .44 (.46)
ethnic .09 (.19) .19 (.17) .05 (.04) .39 (.41)
lon. pre .64 (.65) .00 (.00) .03 (.03) .18 (.19)
___________________________________________________________________________

While the differences between the results at 10 and at 100 iterations could be
important when regression coefficients or variances of borderline significance are
considered, in our case it is unlikely that the results after many more iterations
would lead to a different conclusion about the two coefficients for `repeat' and
`ethnic,' so no further computations were done. Based on the preliminary analyses
in Table 3.1 and on the results in Table 3.2, I assume that the slope  coefficients
for the variables `repeat' and `ethnic' are fixed.

The next model, with fixed within class regression slopes for the pupil
variables `repeat' and `ethnic,' also encounters convergence problems. Again the
results at 10 and 100 iterations do not differ much. The variance for the slope of
`loneliness pretest' is again estimated as 0.03, with a p-value of 0.17. Thus, in the
next model this slope is also fixed. Now the model converges very fast; it needs
only four iterations. The two remaining parameter variances of 0.17 for the
intercept and 0.09 for the slope of `pupil gender' are both significant at p<0.01. The
equations for this model are, at the pupil level:

Yij = β0j + β1jX1ij +β2jX2ij +β3jX3ij +β4jX4ij + eij (3.13)

and at the class level:

β0j = γ00 + u0j (3.14a)
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β1j = γ10 + u1j (3.14b)
β2j = γ20 (3.14c)
β3j = γ30 (3.14d)
β4j = γ40 (3.14e)

The results for this model are reported in Table 3.3 below:

Table 3.3. HLM model with pupil variables only
________________________________________________________
for: gamma  p var. of u  p
intercept .06 .32 .17 .00
gender -.17 .07 .09 .01
repeat .14 .10
ethnic .12 .08
lon. pre .63 .00
________________________________________________________

HLM computes a deviance for the model tested, based on the likelihood function.
When one model is a subset of another model, the difference between their
deviances is distributed as a chi-square, with degrees of freedom equal to the
difference of the number of parameters included in the two models. As part of its
output, HLM prints the deviance and the number of parameters in the model;
these can be input in a subsequent model and HLM will then perform the
appropriate chi-square test. To use this test properly, it is important to realize that
the two-level version HLM/2L computes a restricted maximum likelihood solution

(RML, see chapter 2). This means that the regression coefficients (intercept and
slopes) do not enter the likelihood function. As a result, we cannot use the
difference between deviances to test the difference between two models that differ
only in their regression coefficients. When we compare two models that only differ
in their regression coefficients, we will see that the number of parameters
estimated, as reported by the program, is the same, even if the actual value of the
deviance may be somewhat different. As a result, in HLM the chi-square test
based on the difference between the deviances of two nested models can only be
used to test differences in the random parts (the variance components) of those
models. For the regression coefficients we have to rely on the standard errors of
the regression coefficients and their associated p-values, which are computed for
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each regression coefficient separately. However, these tests are only approximate
and should therefore be interpreted with some caution. Founding important
decisions based on a borderline (non)significance of one of these coefficients is
risky. The three-level program HLM/3L uses Full Maximum Likelihood, which
makes it possible to use the likelihood test for regression coefficients as well.

All the changes we have so far made in the model are changes in the random
part. As a consequence, we can compare the models by looking at their deviances
and at the number of parameters estimated in the random part of the model. For
the first model (results in Table 3.2), HLM reports 16 parameters estimated and a
deviance of 894.2. The next model, with only the within class regression slopes for
`repeat' and `ethnic' fixed, estimates seven parameters, and it has a deviance of
900.8. The difference between the two deviances is 6.6, which is approximately
distributed as a chi-square variate with 16-7=9 degrees of freedom.1 The p-value of
this chi-square is p=0.68, which is not significant. The final model (results in Table
3.3) estimates four parameters, and has a deviance of 908.3. This is not
significantly different from the previous model (χ²=7.5, df=5, p=0.19), or from the
first model (χ²=14.1, df=12, p=0.29). From the chi-square tests of the difference
between deviances of successive models, we conclude that omitting these
(co)variances from the random part does not significantly affect the overall model
fit.

In the last model, with the intercept and the slope of the variable `pupil
gender' random (all other coefficients are fixed), the pupil level error variance
sigma squared is 0.39, which is considerably smaller than the sigma squared of
the intercept-only model, which is 0.72. We might want to compute another intra
class correlation, or want to determine how much intercept variance is explained.
However, this would be misleading, since we now have not only a random

intercept, but also one random slope for `pupil gender.' The residual error terms
uinterc. and ugender are correlated, and the variance of uinterc σ00 depends on the way
the explanatory variable `pupil gender' is scaled. In these data, gender is coded
1=boy, 2=girl. If we change this code to boy=0, girl=1, or to boy=-1, girl=+1 (all

                                           
    1Since the first two models did not converge, the deviances are imprecise. Still, close to the
maximum of 100 iterations, the deviance did not change much between iterations, and
therefore I decide to use them nevertheless.
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permissible transformations for interval data), we will get slightly different
variance estimates. Thus, the specific value of this `intra class correlation' would
vary with (quite permissible) linear transformations of `pupil gender.' The
conclusion is that, when we introduce random slopes, interpretations of variance
components should be made with caution.

After each analysis, HLM asks whether the group level variables specified
before should be regressed on the `residuals' from the within group analysis. This
means that we may now attempt to explain the different values across classes for
the random regression coefficients (both the intercept and the slope of `pupil
gender') by the teacher level variables Z1 to Z3 (teacher gender, teacher experience,
and teacher having followed courses), using simple regression techniques. This
makes sense only for those  regression parameters that have large (significant)
random variation. In Table 3.2, ethnicity and repeat showed almost no variation
over classes. Trying to explain this variation by teacher variables at the class level
does not make sense, since there is no reliable variation in these slope coefficients
(as is also shown in Table 3.1). Trying to explain the significant variation over
classes in the intercept and in the slope (cf. Table 3.3) for pupil gender does make
sense.

Since ordinary single level regression estimates can be computed much faster
than the corresponding multilevel estimates, this option gives us an opportunity
for a quick `preview' of what may happen if we include specific second level
explanatory variables to model the random coefficients. If we choose this option,
HLM reports ordinary regression slopes, standard errors, and T's (which are
normal deviates), but no p-values. For the intercept and the slope of `pupil gender',
the two random parameters in the final model (cf. Table 3.3), HLM reports only
one effect with a T-value exceeding ± 2.0: the interaction between `pupil gender'
and `teacher experience'. The effects of `teacher gender' and `teacher experience'
on the intercept have T-values exceeding ± 1.0. Since these results are from an
ordinary analysis, the p-values are unreliable and biased in the direction of
producing too many `significances'. If the number of explanatory variables was
large, it would make sense to try further HLM analyses with only the one
interaction exceeding T=2.0. In this case, since the number of class level
explanatory variables is small, we may as well try all three effects that had a T
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exceeding ± 1: the two direct effects of the teacher variables `teacher gender' and
`teacher experience', and the interaction effect of `teacher experience' and `pupil
gender'. The results are presented in Table 3.4, which is set up in a format similar
to the way the HLM output is organized:

Table 3.4. HLM model with pupil and class variables
________________________________________________________
for: gamma SE p var. of u p
intercept .11 .34 .21 .17 .00

*teach. gndr .30 .17 .09
 *teach. exp. -.02 .02 .23
pup. gender .15 .19 .29 .07 .03
 *teach. exp. -.03 .01 .08
repeat .15 .09 .09
ethnic .12 .07 .08
lonely pretest .64 .04 .00
________________________________________________________

Table 3.4 corresponds to the following model for the pupil level:

Yij = β0j + β1jX1ij + β2jX2ij + β3jX3ij + β4jX4ij + eij (3.15)

and the class level model is:

β0j = γ00 + β01Z1j + γ02Z2j + u0j (3.16)

β1j = γ10 + γ12Z2j + u1j (3.17)
The matrix of variances and covariances of u0j and u1j at the class level is (the HLM
output gives this as the matrix Tau):

Σ = σ00   σ10

σ01   σ11

Equation (3.17) makes clear that the entry pup. gender * teach. exp. is the
cross-level interaction between the pupil level variable `pupil gender' and the class
level variable `teacher experience'.

Generally, underspecification of models is considered a larger danger than
overspecification (cf. Mosteller & Tukey, 1977). To avoid underspecification, I
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decide to continue the analysis by omitting only those effects that are not
significant at a significance level of 0.10. We then finally arrive at the results in
Table 3.5:

Table 3.5  Final HLM model with pupil and class variables
________________________________________________________
for: gamma SE  p   var.of u p
intercept .06 .10 .32 .17 .00
pup. gendr .19 .18 .22 .07 .02

*t. exp. -.03 .01 .04
repeat .15 .09 .09
ethnic .12 .07 .09
lonely pre .63 .04 .00
________________________________________________________

As I noted in chapter two, predicting a slope coefficient by higher level explanatory
variables in a higher level regression equation is statistically and conceptually
equivalent to introducing a cross-level interaction term between a class level
variable and a pupil level variable. HLM obscures such interaction terms by using
equations 3.15 to 3.17 to describe the hierarchical regression model. The model
implied by the results in Table 3.5 corresponds to the following single model
equation:

Yij = γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ40X4ij + γ12X1ijZ2j +
+ u0j+ u1jX1ij+ eij (3.18)

This is important, because interaction terms tend to correlate highly with the
explanatory variables which make up the interaction. Therefore, to interpret any
interaction correctly, the direct effects of these explanatory variables must also be
included in the regression equation (Jaccard et al., 1990). The single equation
version in equation (3.18) makes clear that by successively omitting nonsignificant
terms, we have ended up with a regression equation that does not follow this rule.
Since the effect of `teacher experience' on the slope of `pupil gender' is an
interaction, both `teacher experience' and `pupil gender' must be in the regression
model too. Thus, the model in equation (3.18) should be replaced by a new model
that includes all necessary terms. This leads to the model in equation (3.19):
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Yij = γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ40X4ij + γ02Z2j + γ12X1ijZ2j +
+ u0j+ u1jX1ij+ eij (3.19)

To clarify what happens, I have rearranged the next table to present first the main
effects at the pupil and the class level, followed by the cross-level interaction
between pupil gender and teacher experience:

Table 3.6  Corrected final HLM model with pupil and class variables
________________________________________________________________
for: gamma SE p var. of u p
intercept .17 .22 .28 .18 .00
pup. gend. .15 .19 .28 .07 .00
repeat .15 .09 .10
ethnic .12 .07 .08
lonely pre .63 .04 .00

teach. exp -.01 .02 .32

pup. gend.
* t. exp. -.03 .01 .08
________________________________________________________________

Table 3.6 makes clear that there is a cross-level interaction between X1*Z2 in the
model, a fact that remains hidden in the way HLM organizes its output.
Substituting the higher level regression equations into the lower level regression
equation, as at the start of this section, shows this relation between the
explanatory variables more clearly. For the same reason, a format as in Table 3.6
is to be preferred to the format used in Table 3.4 and 3.5, which follows the HLM
output; Table 3.6 makes the presence of the interaction more evident.

The conclusion from all these analyses is that there is significant between
class variation in the intercept and in the slope for pupil gender. The class level
variables at our disposal cannot explain the class level variation of the intercepts.
The variation in the regression slope for pupil gender can partly be explained by
the teacher's experience, but there remains significant unexplained parameter
variance. The loneliness pretest is significant in all models, but this information is
not very interesting, because this is simply the pretest, which is a covariate. I
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interpret the p-values of 0.10 and 0.08 for `repeat' and `ethnic' as a sign that these
variables merit further research with a larger sample size. It is interesting that
there is no significant overall effect of pupil gender on the dependent variable
`loneliness,' while this effect does vary significantly across classes. The fact that it
shows significant variation tells us that this apparent `nonsignificance' masks an
interaction with class level explanatory variables. The cross-level interaction
between pupil gender and teacher experience tells us that classes with an
experienced teacher have a different effect of pupil gender on loneliness than
classes with inexperienced teachers.

In interpreting the interaction in the interviewer example in chapter two I
have noted that an interaction between two explanatory variables X1 and X2

means that the regression coefficient for X1 has a different value for each value of
X2 (cf. Jaccard et al., 1990). The value given for the regression coefficient of X1 is
the value for X2=0, and the value given for the regression coefficient of X2 is the
value for X1=0. If X1 and/or X2 do not (or sometimes even cannot) attain the value
`zero,' the values of the regression coefficients of X1 and X2 can be quite misleading
if they are interpreted on their own. In our example, `pupil gender' is scored 1 for
boys, 2 for girls, and `teacher experience' is measured simply in years. Thus, `pupil
gender' cannot become zero, and teacher experience is very unlikely to be zero.
This means that as soon as the interaction is included in the model, the regression
coefficients for pupil gender and teacher experience have no longer a simple
interpretation, because they refer to a situation that cannot exist in our data. In
fact, if we compare the estimate for the regression coefficient of pupil gender in a
model without the interaction (Table 3.3) with the estimates in the model that
includes the interaction (Table 3.6), we see that it changes from a negative -.17 to
a positive +.15. So, in interpreting the final model, we would be tempted to
conclude that girls are more lonely than boys, but this conclusion would only hold
for classes that have teachers with zero experience. If we ignore the teacher
variables,  (Table 3.3) we find that girls are actually less lonely than boys.

To interpret this interaction, it is helpful to write out the regression equation
for one explanatory variable for various values of the other. With continuous
variables, a good strategy is to write the regression for X1 for the mean and for the
minimum and maximum of X2 (the median and the 25th and 75th percentile
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would also be a good choice). The pupil level variable `pupil gender' is scored 1 for
boys, 2 for girls, and the class level variable `teacher experience' is measured in
years. Since the pupil variable is the one with the varying slopes, we would
generally write the regression equation for the pupil variable for different values
of the teacher variable. Since in this specific case the pupil variable `gender' has
only two values, while `teacher experience' has many, I prefer to write the
regression equation for teacher experience for the two values of pupil gender.
Ignoring the intercept and the other explanatory variables, the regression
equations relating posttest loneliness to teacher experience for boys and girls
separately can be found by taking the appropriate part of the regression equation
(the relevant numbers are in Table 3.6), filling in the values for pupil gender and
teacher experience, and working out the equation. The resulting equation is, for
boys: Y=0.15-0.04*teach.exp., and for girls: Y=0.30-0.07*teach.exp. If I work out
the predicted loneliness for girls and boys, for different values of teacher
experience, I find that for teachers with less than five years of experience, girls are
more lonely than boys, and for teachers with six or more years of experience, boys
are more lonely than girls. (In the interview example in chapter two, I visualized
the interaction by plotting both regression lines in one figure, which simplifies
interpretation). Since in our data set the average teacher experience is more than
12 years, much larger than the turnover point of five years, on the average boys
are more lonely than girls, just the opposite of what one might expect from the
positive value of 0.15 for the gamma (main effect) of pupil gender in the last model
(Table 3.6). This is analogous to what happens if we interpret a main effect in an
analysis of variance in the presence of a strong interaction. The conclusion is that,
just as in analysis of variance, it is dangerous to interpret direct effects in the
presence of interactions.

It is important to note again that all these complicated calculations and
interpretations can be avoided by scaling the explanatory variables in such a way
that `zero' is an interpretable value that also is observed in the data. With pupil
gender we can accomplish this by scoring boys=0, girls=1 instead of the boys=1,
girls=2 scoring now used. A more general strategy is to center the explanatory
variables around their overall mean. With centering, regression slopes do not
change if an interaction is added to the model, and the size of the direct effect of a
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variable involved in an interaction can be interpreted as the effect of that variable
for pupils with an average value on the other variable.1

Some coefficients reported in Table 3.6 are of borderline (non)significance.
Since the significance levels are approximate we may decide to keep these in the
final model, and decide to replicate the study with a larger sample.

3.2 VARCL Analysis of the Example Data

I repeat the single-equation version of the basic two-level regression model:

Yij = γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij + u1j Xij + u0j + eij

The general two level model in VARCL notation (cf. Longford, 1990) is:

Yij = bj1Xij1 + bj2Xij2 + bj3Xij3 + ... + bjkXijk + eij (3.20)

where the subscript i refers to the first level, j to the second level, and k to the
regression coefficients. The first coefficient bj1 is the intercept; the program
automatically sets the associated Xij1 to one. As a consequence, in VARCL the
variable Xij1 is always the constant 1.0, which makes bj1 the regression intercept.
The errors eij are assumed to have a normal distribution with mean zero and a
variance σ². At the second level the random coefficients bjk are written as:

bjk = ßjk + δjk (3.21)

where the ßjk are regression parameters to be estimated, and the δjk are residual
error terms. The residual errors δjk are assumed to be normally distributed with a
mean of zero and covariance matrix Σ. The difference of equation (3.21) with our
notation is that I use γ (gamma) for the regression coefficients in equation (3.21),
and ujk for the second level error. Thus, compared to equation (2.1) to (2.4), VARCL

                                           
    1Note that the centering option offered in HLM centers the variables around their group
means, and not around the overall mean. Centering around the group mean has a totally
different effect on the interpretation of the regression weights.
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estimates models of the form:

Yij = ß0j + ß1jXij + eij (3.22)

for the first level. The random intercept ß0j is written as the usual linear function
of the second level explanatory variable Z:

ß0j = γ00 + γ01Zj + u0j (3.23a)

The random slope ß1j, however, is written as:

ß1j = γ10 + u1j. (3.23b)

Substituting (3.23a) and (3.23b) into (3.22) gives (3.24):

Yij = γ00 + γ10Xij + γ01Zj + u1jXij+ u0j + eij. (3.24)

If we compare my equation (2.4) to the equivalent VARCL equation given in (3.24),
we see that VARCL contains no build-in provision for modeling lower level
regression slopes by higher level variables. To model the lower level regression
slopes, we must compute the necessary interaction variables outside VARCL, and
include these in the data set with the other variables. To explain how this works
(see also my discussion of the random coefficient model in chapter 2), I go back to
the example with one pupil level variable Xij and one class level variable Zj. The
pupil level model is given by equation (3.22), which is repeated here:

Yij = ß0j + ß1jXij + eij (3.22)

The random coefficients ß0j (the intercept) and ß1j (the slope for X)  are modeled by
VARCL as: ß0j=γ00+γ01Zj+u0j (equation 3.23a) and ß1j=γ10+u1j (equation 3.23b). By
substitution into (3.22) we get (3.24), which is also repeated here:

Yij = γ00 + γ10Xij + γ01Zj + u1jXij+ u0j + eij. (3.24)

Equation (3.24) is in fact the model we automatically get when we specify in the
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program that Z is a class level variable, X is an individual level variable, and that
the regression coefficient for X is to be random. Equation (3.20) is very similar to
our equation (1.4), but it lacks the interaction. To model the random coefficient ß1j

with the second level variable Z, we must expand (3.23b) by writing:
ß1j=γ10+γ11Zj+u1j. If we substitute that into (3.22) we get equation (2.4):

Yij = γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij +
+ u1j Xij + u0j + eij (2.4)

Comparing equation (2.4), which we want to estimate, with equation (3.24), which
is normally estimated by VARCL, it is easy to see that we can fit (2.4) in VARCL
by providing the program with the interaction-variable (ZjXij) and entering it in
the regression equation at the pupil level. Because the random part in (3.24) is
already equal to that in (2.4), the regression coefficient for the interaction variable
must be declared to VARCL as fixed; if it was declared as random VARCL would
put an unwanted extra variance component in the model.

To analyze a two level model with VARCL, we must prepare three input files:
a basic information file and two data files, one for each level (a three level model
needs the basic information file plus three data files). The basic information file
provides the program with the number and names of the variables at each level,
the number of observations at each level, and some other information. The data in
the two data files have to be sorted. No unit identifications are needed, because the
basic information file specifies how many observations are in each group at each
level. VARCL requires that the analyst defines a so-called `maximal model', which
contains all variables and parameters that are thought to be theoretically
interesting. VARCL allows for fitting many models in a single computer session,
but all these models must be sub-models of the maximal model that is declared at
the beginning of the analysis session.

A sub-model is a model that can be derived from the maximal model by
constraining parameters from random to fixed, or dropping explanatory variables.
If one model is a subset of another model, the difference between their deviances is
approximately distributed as a chi-square with degrees of freedom equal to the
difference of the number of parameters estimated in both models. Here, VARCL
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differs from HLM in a very important aspect. VARCL uses full maximum
likelihood (FML) estimation, where the fixed regression parameters are included
in the likelihood function. When the number of parameters in a model is counted,
the fixed part of the regression parameters is included, and as a result the test
based on the difference in two deviances can also be used to test models that differ
in the number of explanatory variables (regressors), but do not differ in their
random parts. When Restricted Maximum Likelihood (RML in HLM/2L, RIGLS in
MLn) is applied, only the deviances of models that differ in their random parts can
be compared to each other. This means that to decide which sub-models merit
further examination, analysts using VARCL can choose to compare the deviance of
different models, or to inspect the estimates and standard errors of various
coefficients in one specific model. Generally, when a number of variables is
dropped from a model because their regression slopes are not significant, the
chi-square test on the difference in deviances between the larger and the smaller
model is also not significant. If both tests lead to different conclusions (which may
happen, especially with models for non-normal data), the procedure using the
deviance is considered to be more precise (McCullagh & Nelder, 1989).

VARCL provides parameter estimates and standard errors, but no p-values. If
researchers want these, they have to be computed outside the program. Since the
standard errors are only approximate, it is much easier to consider a parameter
`significant' when its absolute value is at least twice as large as its standard error;
this is approximately equal to a two-sided test at the five percent significance
level.

After the first model has been calculated, VARCL offers the option to save the
sufficient statistics and other information for the maximal model in a so-called
dump file, which can be read directly by the program in later runs. Using a dump
file enables the researcher to save time later by bypassing the model definition
stage.

In addition to the maximal model, which is generally the most complex model
that we are willing to consider, the `intercept only' model (a model that includes no
explanatory variables) serves as a minimal model. The intercept only model is
given by:
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Yij =  γ00 + u0j+ eij (3.25)

This model produces a value for the deviance, and estimates the pupil level
variance σ² and the class level variance σ00 with its standard error.1

For the example data, the intercept only model has a deviance of 1128.3; it
estimates the class level variance as 30 percent of the total variance, and the pupil
level variance as 70 percent of the total variance.
Since the number of explanatory variables in our example is small, we can include
all variables in the maximal model. To fit interaction terms with the program, we
have to include all interaction variables in the data file. This forces the researcher
to think of interactions that may be useful to include in the models to be tested,
and to compute these interactions before executing VARCL. Our four pupil and
three teacher variables define (4×3=) 12 interactions between the two levels. This
number is not prohibitively large, but clearly in a larger data set the number of
possible interactions can increase rapidly. Therefore, I start the VARCL analysis
with a maximal model that contains no interactions, only additive effects, and
attempt to determine at a later stage which interactions must be selected for
further testing. To decide which model to keep, I will mainly focus on the
deviances of the different models. The difference in the deviance of two nested
VARCL models is chi-square distributed, with as degrees of freedom the difference
in the number of parameters estimated. To decide which parameters may be
constrained or dropped, we examine the standard errors of the parameters. Since
underspecification is generally a larger danger than overspecification (cf. Mosteller
& Tukey, 1977), parameters are dropped only when their two-sided p-value is
larger than 0.10.

The maximal model is:

Yij = γ00 + γ10 Xij + γ01 Zj + u1j Xij + u0j + eij (3.26)

                                           
    1VARCL does not compute a standard error for σ². For the higher level variances, it
computes the standard error of their square root, designated as 'sigma' by the program.
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With four pupil level and three class level explanatory variables, this model
includes one pupil level variance σ², the five class level variances of ß0 to ß4, and
the 10 covariances between ß0 and ß4. Thus, the class level covariance matrix Σ
contains 15 parameters to be estimated.

At the start of the analysis, when the maximal model is defined, VARCL asks
whether the covariances between the random regression slopes in the matrix W
should be fixed at zero. If this option is chosen, VARCL estimates a much simpler
model. In many analyses, the covariances between the slopes turn out to be very
small, and fixing them to zero speeds up the computations. There are also
statistical advantages: we are estimating fewer random parameters, and the
resulting models are generally more stable. HLM and MLn include all covariances
by default in the model. For comparison, I start the VARCL analysis with a
maximal model in which all explanatory variables are included and in which all
covariances are assumed to be non-zero (model 1). In the next model (model 2), I
fix all slope-by-slope covariances to zero, estimating only slope-by-intercept
covariances. This results in a class level covariance matrix Σ that contains only
nine parameters: the five variances and the four covariances of the four slopes
with the intercept. I use the overall test on the deviances to test whether fixing all
slope by slope covariances at zero is justified. The deviance of the maximal model
with all slope by slope covariances estimated is 868.1. The deviance of the
maximal model with all slope by slope covariances fixed at zero is 869.3, and the
difference with the deviance of the previous model is 1.2. A comparison of the
parameter count shows that we have restricted six covariances to zero. Thus, the
value of 1.2 is a chi-square variate with six degrees of freedom, which gives a
p-value of 0.98. I conclude that these covariances may be fixed at zero.

Next, the model is simplified by fixing random regression slopes or by
dropping variables that are clearly not significant. The results (deviances and
associated tests) of this model exploration by backward elimination of
nonsignificant effects are summarized in Table 3.7.

If we compare model (1) and (2), it turns out that the slope-by-slope
covariances can be fixed at zero, leaving only intercept-by-slopes covariances in the
model. The difference in deviance between models (5) and (6) corresponds to a chi-
square of 6.0 with two degrees of freedom, which is of borderline significance
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(p=.05). This indicates that dropping the regression slopes for `repeat' and `teacher
gender' results in a significant reduction of the model fit. The other p-values are
clearly non-significant. Since the difference between model (5) and model (6) is of
borderline significance but rather small, I could choose to use model (6) because it
is the most parsimonious model. Instead, I prefer to keep model (5) as the most
parsimonious model that describes the data well.

Table 3.7. Summary of VARCL models for example data
________________________________________________________________

difference with previous model
Model: Deviance #Parameters Chi² df p

(1) Max, Slope×Slope 868.1 24 - - -
(2) Max, I×S only 869.3 18 1.2 6 .98
(3) Fix lonely pretest 870.8 16 1.5 2 .47
(4) Fix repeat & ethn. 875.8 12 5.0 4 .29
(5) Drop teacher courses 876.5 11 0.7 1 .41
(6) Drop rept & t. gend. 882.5  9 6.0 2 .05
________________________________________________________________

Model (5) corresponds to the single model equation:

Yij = γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ40X4ij + γ01Z1j + γ02Z2j +
+ u0j+ u1jX1ij+ eij. (3.27)

The parameter and variance estimates for this model are presented in Table 3.8
below:
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Table 3.8  Estimates for the example data, model (5)
_________________________________________________
Variable:   γ   SE    p
intercept .25
pup. gender -.17 .08 .05
repeat .15 .08 .09
ethnic .13 .07 .05
lonely pretest.63 .04 .00
teach. exper. -.03 .01 .04

Variance Sigma  SE(sigma)

pupil level (σ²): .39
intercept (σ00): .14 .37 .06 (p=0.00)
slope p.gend.(σ11) .08 .28 .09 (p=0.00)
_________________________________________________

In model (5), the intercept variance (σ00) is much lower than in the `intercept only'
model. As before in the HLM analysis, this is difficult to interpret, because the
model also contains a random slope for a pupil variable, and the two estimates are
correlated. Again, simple linear transformations of this explanatory variable may
change this variance.

The standard deviation for the slope of pupil gender (Sigma in Table 3.8) is
0.28. This is large, compared to the mean value of -0.17. This means that it is
likely that at least in a few classes the slope of pupil gender is positive instead of
negative (we can confirm this by requesting their estimated values, which VARCL
calls `posterior means', and inspecting these.)  The implication is that, while in
general girls are less lonely than boys, there are a few classes where they actually
are more lonely than boys.

Since there are three teacher variables, we can investigate three different
interactions with pupil gender to explain the slope variation. The model which
includes all three interaction variables has a deviance of 872.7, which differs from
model (5) by 3.8. Since we have added three interaction variables to the model,
this difference in deviance is referred to the chi-square distribution with three
degrees of freedom. The resulting p-value is 0.28, which suggests that adding the
interactions has not improved the fit of the model. However,  only the slope for the
interaction between pupil gender and teacher experience is larger than its
standard error. The next model includes only this interaction; this model has a
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deviance of 873.1. The difference between the deviance of this model and the
deviance of the model that includes all three interactions is 873.1-872.7=0.4, with
two degrees of freedom; this shows that a model with one interaction fits as well as
a model with all three interactions. The difference between the deviance of the
model with one interaction and the deviance of model (5), which has no
interactions, is 876.5-873.1=3.4, at the cost of including one more parameter in the
final model (the regression coefficient of the interaction variable); a chi-square test
with one degree of freedom yields a p-value of 0.06. This is of borderline
significance, and I decide to keep this interaction in the model. The parameter and
variance estimates for this final VARCL model are in Table 3.9:

Table 3.9  Final estimates for the example data
_________________________________________________
Variable:   γ    SE    p
intercept .25
pup. gend. .15 .18 .41
repeat .15 .08 .08
ethnic .13 .07 .06
lonely pretest.64 .04 .00
teach. exper. -.02 .01 .28
p.gend.×t.exp. -.03 .01 .06

Variance Sigma  SE(sigma)

pupil level (σ²): .39
intercept (σ00): .14 .38 .06 (p=0.00)
slope p.gend.(σ11) .05 .24 .09 (p=0.01)
_________________________________________________

If we compare these results with the previous model in Table 3.8, we note that
after the introduction of the interaction the sign for the overall effect of pupil
gender has changed, and that the p-values for pupil gender and teacher
experience are no longer significant. Furthermore, adding the interaction variable
has diminished the variance of the slope for pupil gender, but there is still
significant unexplained variation left. Apart from the pretest, no variables are
significant at the conventional alpha level of 0.05. Since the standard errors and
significance values are approximate, and some of these coefficients are of
borderline significance, the conclusion is that these variables merit further
investigation with a larger sample.
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To interpret the interaction, we must compute the regression slopes of teacher
experience for boys and girls separately, just as we did in the previous analysis
with HLM. Pupil gender is scored 1 for boys, 2 for girls, and teacher experience is
measured simply in years. Ignoring other variables, the regression equation
relating posttest loneliness to teacher experience can be found by taking the
appropriate part of the regression equation (from Table 3.9) and filling in the
values for pupil gender and teacher experience. The equations linking posttest
loneliness to teacher experience (Exp.) are for the boys:
(Y=1*0.15-0.02*Exp.-1*0.03*Exp.=) Y=0.15-0.05*Exp.; and for girls (Y=
2*0.15-0.02*teach.exp.-2*0.03*Exp.=): Y=0.30-0.08*Exp. In our analysis, for
teachers with less than five years of experience, the girls are more lonely than the
boys, and for teachers with six or more years of experience, the girls are less lonely
than the boys. Since in our data set the average teacher experience is more than
12 years, much larger than the turnover point of five years, the regression slope
for `pupil gender', not taking teacher experience into account, is -0.17 (see Table
3.8), just the opposite of what one might expect from the positive value of 0.15 for
the coefficient of pupil gender in the last model. With the HLM analysis we found
basically the same results, reminding us that it is dangerous to interpret main
effects in the presence of significant interactions, and that we should interpret
interactions with reference to the range of values of the explanatory variables
actually present in the data.

3.3 MLn Analysis of the Example Data

MLn differs from HLM and VARCL in that it can analyse data with an arbitrary
number of levels (assuming sufficient computer memory), and offers analysts a
choice between Full maximum Likelihood estimation (called IGLS) and Restricted
Maximum Likelihood estimation (called RIGLS). Just as its precursor ML3, it has
many built-in commands for data-manipulations such as centering or
standardizing variables, and graphical commands to produce various plots.

I repeat the basic hierarchical regression model with one variable Xij at the pupil
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level, and one variable Zj at the class level:

Yij = γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij + u1j Xij + u0j + eij

The MLn notation is essentially equal to the notation I have used so far. There is
one interesting difference. For each group, MLn estimates a micro level regression
equation of the form:

yij=ßj0Xij0 + ßj1Xij1 + ... +  ßjP-1XijP-1 + eij (3.28)

where yij is the outcome variable for individual i in group j
Xijp are the individual level variables
eij is random error, and
ßjp are the random regression coefficients within group j

As equation (3.28) makes clear, MLn treats the intercept coefficient exactly the
same way as the slope coefficients. Generally the explanatory variable Xj0 will
have the value `1' for all cases, which makes bj0 the usual intercept. VARCL does
precisely this; the program automatically assigns the value `1' to Xj0, and for that
reason we simplified the VARCL section by omitting Xj0. MLn does not
automatically assign any value to the explanatory variable Xj0; users must do that
themselves. As a rule, users will set the value of the explanatory variable  Xj0 to `1',
but it is perfectly possible to use other values than `1' or to use a variable instead
of a constant. This is one of the features that make it possible to use MLn to
analyze all sorts of nonstandard models.

There is a second intriguing difference between MLn and the other two
programs. With HLM and VARCL, the regression slopes at the highest level
(group level) are always fixed. MLn allows all regression coefficients to be random
at all levels. The variances and covariances of the beta's are contained in the
covariance matrix Ω (omega). Since the regression coefficients may be random at
all available levels, there are covariance matrices: Ω1, Ω2, ... Ωl, corresponding to

the number of levels specified for MLn. The higher level covariance matrices Ω2,
Ω3, etcetera, have the same interpretation as the matrix Tau in HLM and Sigma
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in VARCL; they hold the higher level (co)variance components of the regression
coefficients. Ω1 is different; it is defined on the first (lowest) level, and can be used
to model heterogeneous variances on the first level (Prosser et al., 1990, explain
how to do this in the MLn manual). This is a feature only MLn has, and again this
makes it possible to use MLn to analyze many nonstandard models. For instance,
Goldstein (1994) uses this feature to model a cross-classified structure, and Van
Duijn, Snijders and Lazega (Van Duijn, Snijders & Lazega, 1994) use it to model
sociometric network data.

The higher level variance of the regression coefficients (intercept and slopes)
may again be explained by a between group model. In the MLn notation, this
equation takes the form:

ß1j = γ10 + γ11 Zj + u1j. (3.29)

Apart from the covariance matrices Ω, for which I use Σ, the MLn notation is
identical to the notation in this book.1

MLn requires only one data file, which has to be sorted, and must contain
variables that identify the units at all levels used. MLn is a totally interactive
program. The data are kept in a worksheet, where the variables define the
columns and the cases define the rows.2 There are many commands that allow the
user to `play around' with the data, such as standardizing variables or centering
variables around either the grand mean or the group means. MLn also has
powerful graphic commands to produce overall or group-wise plots. Together with
the availability of macro routines, which let users automatically repeat
computations or use residuals from one analysis automatically as input in another
                                           
    1When there are more than two levels, the Σ should carry a subscript to indicate to which
level it belongs. As long as there is no risk of confusion, I will use the simpler notation.

    2All data must reside in RAM memory. As a consequence, the computer must have enough
memory to hold all the data, including storage for a number of variables used internally by the
program. The example data fit in a PC/AT version of ML3, including predicted values and
residuals for plots. However, it did strain the machine, and a larger data set would require a
486 PC and the extended memory version of the program. MLn exists needs extended
memory.
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model, this makes MLn a very powerful program. It also makes the program fairly
complicated, and only experienced `power users' will use all its features.

For the simple purpose of our example, the most interesting feature of MLn is
the fact that it is interactive and gives users complete control over the
computations. This makes it easy to try out different subsets of explanatory
variables and different error structures. It is also not necessary to wait until all
the computations are completed. MLn allows analysts to perform the iterative
computations step by step, or only a few iterations at a time. If inspection of the
preliminary results indicates that the model is obviously wrong, it can be changed
at any moment.

MLn offers a choice between Full Maximum Likelihood estimation (called
Iterative Generalized Least Squares, or IGLS; comparable to the estimation
method used in VARCL) and Restricted Maximum Likelihood estimation (called
Restricted Iterative Generalized Least Squares or RIGLS; comparable to the
estimation method used in HLM). Since IGLS is generally faster and numerically
more stable, it is the preferred method to start with.

Fitting a model to our example data without explanatory variables gives us
the by now familiar decomposition of the variance between level 1 (the individual
level: 0.72) and level 2 (the class level: 0.31). Just like VARCL, MLn produces
parameter estimates and their standard errors, but no p-values. MLn also includes
commands to calculate the probability levels of various test statistics, so it is easy
to calculate whether a certain effect is statistically significant (bearing in mind
that, as with the other programs, the standard errors are valid only for large
samples).

The first model I examine includes all pupil variables in the model, with those
teacher variables that have an (approximate) p-value of less than 0.10, and only
the intercept coefficient random.

The pupil level model is:

Yij = ß0j + ß1jX1ij +ß2jX2ij +ß3jX3ij +ß4jX4ij + eij (3.30)

and the class level model is:
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ß0j = γ00 + γ01Z1j + γ02Z2j + u0j (3.31a)
ß1j = γ10 (3.31b)
ß2j = γ20 (3.31c)
ß3j = γ30 (3.31d)
ß4j = γ40 (3.31e)

which gives

Yij = γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ40X4ij +
+ γ01Z1j + γ02Z2j + u0j + eij. (3.32)

In this model only the intercept is allowed to be random; all other regression
coefficients are fixed. The parameter estimates are in Table 3.10:

Table 3.10  MLn model with all pupil and teacher variables
________________________________________________________

gamma SE p
intercept .23 .19 .21
pup. gender -.15 .06 .02
repeat .12 .09 .15
ethnic .14 .07 .03
lonely pretest .64 .04 .00
teach. gndr .31 .16 .05
teach. exper. -.03 .01 .03

Variance
pupil level (σ²) .41 .03 .00
class level (σ00) .14 .04 .00
________________________________________________________

At this point, I decided to investigate the random structure for the regression
slopes further, and to use the interactive nature of MLn to speed up the process.
One by one, each of the four pupil variables was made random at level 2; in other
words, its slope was allowed to vary between groups. In terms of equation (3.31),
this means that the corresponding ß is assumed to be random, and the appropriate
error term u is added to equation (3.31b) to (3.31e). After only two iterations, the
variance estimate σpp was inspected, with its standard error and the estimate at
the previous iteration. Although convergence was not reached in any of the
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models, the results were absolutely clear. Only the between group variance σ11 of
the slope of the pupil variable `gender' approached significance. All other
variances were estimated as approximately zero with large standard errors, and
they were therefore dropped from the model. The between groups covariance σ10

between the regression slope of `pupil gender' and the intercept was also small
(-0.03, with a standard error of 0.04), and this covariance term was also dropped
(note that this is different from the previous HLM and VARCL analyses, where
this covariance term is always kept in the model by program default, and there is
no way to drop it). This results in the following model:

At the pupil level:

Yij = ß0j + ß1jX1ij +ß2jX2ij +ß3jX3ij + ß4jX4ij + eij. (3.32)

and at the class level:

ß0j = γ00 + γ01Z1j + γ02Z2j + u0j (3.33a)
ß1j = γ10 + u1j (3.33b)
ß2j = γ20 (3.33c)
ß3j = γ30 (3.33d)
ß4j = γ40 (3.33e)

which gives

Yij = γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ40X4ij +
+ γ01Z1j + γ02Z2j + γ12X1ijZ2j + u0j+ u1jX1ij+ eij (3.34)

The variance/covariance matrix Σ at the class level is:

Σ = σ00 -
- σ11

There is no covariance term σ01, since I fixed that at zero. The results from this
model are in Table 3.11:
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Table 3.11 Simplified MLn model with pupil and teacher variables
______________________________________________________________

gamma SE p
intercept .20 .19 .28
pup. gender -.16 .06 .05
repeat .14 .09 .10
ethnic .13 .07 .06
lonely pretest .63 .04 .00
teach. gndr .29 .16 .07
teach. exper. -.02 .01 .08

Variance
pupil level (σ²) .39 .03 .00
class level (σ00) .13 .04 .00
class level (σ11) .07 .04 .00
______________________________________________________________

Since the between class variance of the regression slope for pupil gender
approaches the conventional significance level (p=0.06), we may try to model this
regression slope with the class level variable `teacher experience', which we also
used in the HLM and VARCL analyses. This expands equation (3.33b) to:

ß1j = γ10 + γ12Z2j+ d1j (3.35)

and equation (3.38) now becomes:

Yij =  γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ40X4ij

+ γ01Z1j + γ02Z2j + γ12X1ijZ2j + u0j+ u1jX1ij+ eij (3.36)

To estimate the model given by equation (3.36), we must compute the interaction
variable X1ijZ2j. This is similar to the procedure with VARCL, but this time the 
data manipulation commands of MLn can be used to compute the needed
interaction variable, without leaving the program. The regression slope for the
interaction is -0.03 with a standard error of 0.01, which is significant at the 5
percent level (p=0.05). Since I use the (default) IGLS estimation procedure, which
includes both the random part and the fixed part of the model in the likelihood
function, I can test the significance of the interaction parameter γ12 by comparing
the values of the likelihood function for the models with and without the
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interaction variable. MLn can compute the deviance, and the difference between
the two deviances can be treated as a chi-square. The deviance for the model with
the interaction variable is 873.4, while the deviance of the model without the
interaction equals 877.1. The difference of 3.7 can be referred to the chi-square
distribution with one degree of freedom, which gives a p-value of 0.05. The
results of the final MLn model are in Table 3.12. Since MLn allows us to switch at
will between IGLS and RIGLS estimation, the final model was also estimated with
RIGLS. In this particular case, both methods produce almost identical results.

Table 3.12. MLn, pupil and teacher variables, pupil gender random
________________________________________________________________________

IGLS: RIGLS:
gamma SE p gamma SE p

intercept .10 .20 .60 .11 .21 .60
pup. gender .16 .18 .36 .16 .18 .37
repeat .14 .09 .10 .14 .09 .09
ethnic .12 .07 .07 .12 .07 .07
lonely pretest .64 .04 .00 .64 .04 .00
teach. gndr .29 .16 .07 .29 .17 .09
teach. exper. -.02 .01 .27 -.02 .02 .30
p.gendr.×t.exp. -.03 .01 .05 -.03 .01 .05

variance variance
pupil level (σ²) .39 .03 .00 .39 .03 .00
intercept (σ00) .13 .05 .00 .15 .05 .00
pup.gndr(σ11) .05 .04 .11 .06 .04 .07
________________________________________________________________________

Adding an interaction variable has diminished the variance of the slopes for pupil
gender. As in the previous analyses with HLM and VARCL, the multicollinearity
between pupil gender, teacher experience, and the interaction variable results in
changes in the signs of the regression coefficient for pupil gender and a large
standard error which makes that coefficient not significant. In MLn, it is easy to
check for multicollinearity by using the built-in statistical procedures to calculate
the correlations between the explanatory variables. The correlation between `pupil
gender' and `teacher experience' turns out to be low (r=0.13). The correlation
between `pupil gender' and the interaction variable is 0.50, which is considerable,
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and the correlation between `teacher experience' and the interaction variable
turns out to be 0.84, which is high.

As we just noted, if we add the interaction to the model, the direct effect of
pupil gender is no longer significant. To interpret both the interaction and the
direct effect, it is again helpful to compute the regression equation for teacher
experience for boys and for girls separately. After the similar calculations in the
HLM and VARCL analyses, I leave this as an exercise for the reader.

A strong point of MLn are its powerfull graphics commands. The analyses
suggest that the effect of pupil gender varies across the classes. With MLn, we can
plot the 28 slopes for `pupil gender' in one plot and inspect them visually. The
result is on the next page. The regression coefficient for `pupil gender' in Table
3.11 is -.16, which means that in general girls are more lonely than boys. The
variance of this regression coefficient across the classes is 0.39, which corresponds
to a standard deviation of 0.62. Thus, for most classes the slopes should go down,
but a few might even go upwards. If we inspect Figure 3.1 on the next page, the
generel view is not that all slopes are basically going down from left to right.
Instead, the most striking impression is that we have one class that stands out
from the rest, with a lower intercept and a slope that clearly goes down. The other
slopes do not show a prominent trend. Judging from Figure 3.1, it is quite possible
that the significant interaction effect is actually caused by one single outlier. MLn
has the capability to identify this outlier: it is class number twelve. Before we draw
strong conclusions about the different effect of pupil gender in classes with
teachers of varying experience, it would be wise to inspect the data more carefully.
It is likely that without class twelve, the data would show no random slope
variation. There may be something unique about class number twelve, which is
not captured by the available explanatory variables. Whatever our conclusion,
Figure 3.1 illustrates the value of a graphic inspection of our data. MLn contains
many more graphical commands, for examples see e.g., Goldstein (1987, 1995) and
Prosser et al., (1991) and Woodhouse (1995).
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4. Special Applications of Multilevel
Regression Models

4.1 Multilevel Models for Meta-analysis

Meta-analysis, or integrative analysis, as it is often called, is a quantitative
approach to reviewing the research literature. The primary goal of meta-analysis
is to generalize from a set of studies about a specific substantive issue, by
statistically combining quantitative study outcomes from existing research on a
particular question (Jackson, 1980). The basic idea is to apply formal statistical
methods to the results of a specific set of studies. This statistical approach is one of
the main characteristics that distinguish meta-analysis from the more traditional
narrative literature review (Bangert-Drowns, 1986). If the results of the studies do
not differ too much, we apply statistical procedures to combine all the results into
one average outcome. If the results of the studies vary a lot, the primary goal of
meta-analysis becomes to answer the question why the results vary. Thus, when
results vary, the analyst attempts to explain the different results as the
consequence of differing study characteristics (such as type of design or subjects
used).

In a recent edition of their classical book on meta-analysis, Hunter and
Schmidt (1990) present an instructive example to show why a formal statistical
analysis of study outcomes has its advantages. In this example Hunter and
Schmidt (1990, p24) present the results of 30 hypothetical studies of the
correlation between `Organizational Commitment' and `Job Satisfaction'. The
sample size in the 30 studies varies, and so does the correlation reported as the
main result of the studies. Nineteen of the 30 studies report a significant positive
correlation, nine report a non-significant positive correlation, and two report a
non-significant negative correlation. There are six known background
characteristics of the sample of persons used in a particular study: sex,
organization size, white vs. blue collar jobs, race (white, black, or mixed), average
age, and geographical location (north vs. south). In a narrative review of the
results, Hunter and Schmidt ask the question `Why are commitment and
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satisfaction correlated within some organizations and not within others?', and
proceed to interpret the different study outcomes by relating them to the known
background characteristics of the people within the different organizations. Their
interpretations sound fairly convincing.

As Hunter and Schmidt carefully explain, all these `interpretations' are
completely spurious, since the 30 study outcomes were actually all generated from
one single population characterized by a population correlation coefficient of
r=0.33. For each study the sample size was chosen randomly, and the sampling
error of the correlation in that study was taken from a random distribution with a
sampling variance appropriate to the study's sample size. In other words, all the
interesting looking variation among the 30 studies in this example is entirely due
to sampling variation. Presumably, if a statistically correct method were used to
meta-analyze the 30 study outcomes, an analyst should come to the conclusion
that, within the limits of sampling variance, all studies actually report the same
result.

Clearly, in a meta-analysis the most important preliminary question is,
whether the results differ more from each other than corresponds to the random
sampling variation that is expected given the studies' sample sizes. If the results
do not differ more than is expected given the pure sampling error, they are called
homogeneous, meaning that they come from a single population. In the next
analysis step we would want to estimate the common value of the population
parameter of interest. If the results differ more than expected given the pure
sampling variation, they are called heterogeneous, meaning that they come from
different populations. In this case, estimating the `average' result is not the
primary goal; instead, our goal becomes to analyze the excess variation as a
function of the known study characteristics such as the age or sex composition of
the sample, or methodological characteristics such as the methodological quality of
the study.

There are various methods to analyze and combine separate study results.
Hunter and Schmidt (1990) present many methods to correct study results for
sampling variance and other potential sources of bias. Hedges and Olkin (1985)
provide the most statistically thorough discussion to date of the problems
associated with statistically integrating research findings, and discuss procedures
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for many statistics (means, proportions, correlations.)
Table 4.1 below presents the results of the 30 studies, with the Fisher Z

transformation and the standard errors.

Table 4.1 Hypothetical results for 30 studies on job satisfaction
_______________________________________________________________________
Study#    r  Z se(z)   sex      size    collar    race     age    south 
 1 .46 .49 .06 0 0 1 0 0 2
 2 .32 .33 .01 1 1 0 1 1 2
 3 .10 .10 .04 1 1 1 2 2 2
 4 .45 .48 .04 1 1 1 2 1 2
 5 .18 .18 .01 0 1 0 2 2 2
 6 .40 .48 .02 0 0 0 2 0 2
 7 .56 .63 .05 1 0 0 1 0 0
 8 .41 .43 .02 0 1 1 2 1 0
 9 .55 .61 .05 0 0 1 0 0 2
10 .44 .47 .02 0 0 0 2 0 2
11 .34 .35 .02 1 1 0 2 1 2
12 .33 .34 .02 1 0 0 2 0 2
13 .14 .14 .05 1 0 1 0 2 0
14 .36 .37 .06 1 0 1 2 2 2
15 .54 .60 .04 0 1 1 2 1 0
16 .22 .22 .04 1 0 0 2 1 0
17 .31 .32 .02 0 1 0 2 1 2
18 .43 .45 .02 0 1 0 2 1 2
19 .52 .57 .06 1 0 0 2 1 0
20 -.10 -.13 .02 1 0 1 2 2 2
21 .44 .47 .02 0 1 0 1 1 2
22 .50 .54 .05 0 0 1 2 1 0
23 -.00 -.02 .06 1 0 1 0 2 0
24 .32 .33 .02 1 1 1 2 1 1
25 .19 .19 .06 0 0 1 0 2 2
26 .53 .59 .04 0 0 0 0 0 0
27 .30 .30 .02 1 1 1 2 1 0
28 .26 .26 .05 1 0 1 2 0 0
29 .09 .09 .04 0 0 0 2 2 2
30 .31 .32 .04 0 0 1 1 0 0
_______________________________________________________________________
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The problem of combining the varying results from different studies has some
similarity to the multilevel problem of combining the varying micro-models from
different groups or contexts. In the example of the 30 studies of Hunter and
Schmidt, the contexts are the 30 studies, each of which has its unique individual
characteristics. If we had access to the original data of all the studies, we could
analyze them using the hierarchical regression model. But in meta-analysis we
generally do not have access to the raw data. Still, the statistical problem looks
familiar. In multilevel modeling we have a number of regression models computed
in different contexts, and we want to estimate the expectation and the variability
of the various regression coefficients, and draw conclusions based on all available
information. In meta-analysis we have a number of statistics (in our example:
correlations) computed in different contexts, and we want to assess their average
value and their variability, and again draw conclusions based on all available
information.

The similarity is more than superficial. Raudenbush and Bryk (Raudenbush
& Bryk, 1985, 1987; Bryk and Raudenbush, 1988, 1992) have pointed out that
meta-analysis may be viewed as a special case of the two level hierarchical linear
model. In each study, a within study model is estimated, and a second level or
between study model is added to explain the variation in the within study
parameters as a function of differences between the studies. This is completely
analogous to the example discussed earlier, where a within class (pupil level)
model is estimated in each class, and a between class model is added to explain the
variance of the class level regression coefficients. The variability within the studies
is considered to be sampling variability, which is known if the relevant sampling
distribution and sample size are known (since the variance is assumed to be
known Raudenbush & Bryk (1993) call this the V-known model.) The variability
between the studies reflects both sampling variance and systematic differences
between the results of different studies. If the study level variance is significant,
the studies' results are assumed to be heterogeneous, meaning that there are
indeed systematic differences between the studies. If the study level variance is
not significant, they are assumed to be homogeneous, meaning that the apparent
differences between the studies are just sampling variance. Raudenbush and Bryk
(1992) show that the computational procedure incorporated in HLM are useful as
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a general approach to meta-analysis.
To use HLM for meta-analysis, we need for each study the value of the result

we want to analyze, and its sampling variance in that particular study. Suppose
that we want to meta-analyze the 30 correlations from Hunter and Schmidt's
example. Since the sampling distribution of correlations is not normal, we first
transform the observed correlations r to standard normal Fisher Z variates z using
the Fisher-Z transformation: Z=0.5*ln((1+r)/(1-r)) (see Hays, 1973). The sampling
variance of a Fisher Z is known, it is vz = 1/(n-3) where n is the sample size on
which the corresponding correlation coefficient is based.1

Hence, our within study model is:

zj = ζj + ej (4.1)

where ζj is the true parameter value of the Fisher Z in study j, and ej is the
sampling error in study j. The ej are assumed to be normally distributed with
variance σj²; thus zj varies randomly between studies as a result of the joint effect

of sampling error and real parameter variance. Note that the sampling variances
ej are independent but not identically distributed; they are assumed to have a
normal distribution with a variance σj² that is different for each study because it
depends on the study's sample size.

The between studies model for the random parameter ζj is:

ζj =γ0 + γ1Z1j +γ2Z2j + .. + uj (4.2)

where the Zj's are study level variables, such as the sample composition or the
geographical location. The γ's are study level fixed regression coefficients, and uj is
the study level random error assumed to be distributed normally with variance

σ²u. If we substitute equation (4.2) into (4.1), we obtain:

                                           
    1A well-known effect size measure is the standardized mean difference d=(ME-MC)/S, with
sampling variance (NE+NC)/(NENC)+d²/(2(NE+NC)). For a meta-analysis, one would substitute
the estimated value for d in the equation for the sampling variance, and proceed in the same
manner as descibed in 4.1 for the Fisher Z's. See Bryk and Raudenbush (1992) and Hedges
and Olkin (1985) for other effect size measures and their sampling variances.
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zj =γ0 + γ1Z1j +γ2Z2j + .. + uj + ej (4.3)

In equation (4.3) the variance σj² of ej is the sampling variance, and the variance
σ²u of uj is the parameter variance. Just as in a conventional multilevel analysis,
HLM gives us estimates of the fixed parameters γi and of the sampling variance
and the between studies parameter variance, together with the associated
significance levels. Since we know that the 30 correlation coefficients in our
example are actually homogeneous, HLM ought to tell us that the parameter
variance between the studies is zero. For the preliminary analysis, we leave out
the study characteristics, and estimate the model which is analogous to the
`intercept only' model, which is given by:

zj = γ0 + uj + ej (4.4)

If the parameter variance is very small, the convergence of HLM may be slow.
This turned out to be true; the algorithm needed 558 iterations to converge.1 HLM
estimates γ0 as 0.35, with a standard error of 0.03, and σu is 0.0007, with an
associated p-value (by a chi-square test) of p=0.40. The large (non-significant)
p-value for the parameter variance σu indicates that there is no significant
parameter variance; all observed variation is sampling variation. HLM reports the
same information in the form of a reliability estimate for the regression coefficient

γ0, which is estimated as 0.02.

Since there is no reliable parameter variance between the studies, we may
conclude that the results are homogeneous, and it makes no sense to use the six
study level variables to attempt to explain this nonexisting variation. If there were
reliable parameter variance, we would conclude that the results are
heterogeneous, and in the next analysis step the study level variables can be
included in the model to explain this parameter variance in a manner completely
analogous to conventional multilevel analysis. This analysis would examine
directly the possible causes of the differences in results, another important goal of

                                           
    1Since each iteration was very fast, the total computing time of the V-known (meta-
analysis) version of HLM was still reasonable: a few minutes on a PC/AT).
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meta-analysis. The article by Raudenbush and Bryk (1987) is a clear example of
the kind of reasoning involved.

In our example, there is one more step. Since all variation is sampling
variation, the study results may be regarded as homogeneous, and the value of
0.35 is a useful estimate of a common Fisher Z value z for all studies. Since we are
actually interested in correlations, we have to translate this result back into the
corresponding correlation by the inverse of the Fisher transformation, which is
given by: r=(exp(2*Z)-1)/(exp(2*Z)+1). This produces a common value for the
correlation of r=0.34, which is very close to the known population value of r=0.33.

In general, we should keep in mind that the decision that a specific set of
results is homogeneous or heterogeneous, is a statistical decision given a certain
significance level, and consequently we may commit an error. When the number of
studies is small, the power of the test for heterogeneity may not be good. It is
possible to find one specific significant study level variable, while there is no
significant overall heterogeneity. The procedure outlined above would apply to an
explorative search for relevant study level variables. If we have a strong theory
that predicts that certain study level variables are important, we should test them
even if the preliminary analysis shows that there is no significant between-study
variation.

Meta analysis can also be performed using MLn. Since the variance at the
lowest level is assumed known, the MLn model must exclude the usual constant
from the random part of the lowest level, and in its place include the standard
error as a predictor in the random part of the lowest level, with its associated
coefficient constrained to be equal to one (cf. Lambert & Abrams, 1995). A problem
with this approach is that using MLn the significance test for the parameter
variance will usually employ on the Wald test, dividing the variance estimate by
its standard error and refering the result to the standard normal distribution.
Bryk and Raudenbush (1992) argue against this test because the sampling
distribution of a variance is not normal, and both HLM and VKHLM employ a
different method. If MLn is used for meta-analysis, the difference in test
procedures is a potential source of confusion. The reason is that the conventional
homogeneity tests used in meta-analysis (Cf. Hedges & Olkin, 1985) are a special
case of the chi-square test used in HLM. If VKHLM is used to estimate the
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intercept only model, the result of the chi-square test for the parameter variance
will be virtually equal to the equivalent chi-square test in the random-efects model
described by Hedges and Olkin (1985).1 The result of the Wald test used in MLn
can be widely different, especially when the number of studies is not large. If MLn
is used for meta-analysis, I recommend to use its built-in calculation commands to
implement the chi-square test described by Bryk and Raudenbush (1992, p. 163).

4.2 Non-normal Data; the Analysis of Proportions

The models discussed so far assume a continuous dependent variable and a
normal error distribution. If the dependent variable is a scale in which the
responses to a large number of questions are summated to one score, the data
generally approximate normality. However, there are situations in which the
assumption of normality is clearly violated. For instance, in cases where the
dependent variable is a single dichotomous variable, both the assumption of
continuous scores and the normality assumption are obviously untrue. If the
dependent variable is a proportion, the problems are less severe, but both the
assumption of continuous scores and normality are still violated. Also, in both
cases, the assumption of homoscedastic error is violated.

The classical approach to the problem of non-normally distributed variables
and heteroscedastic errors is to apply a transformation to achieve normality and
reduce heteroscedasticity, followed by a traditional analysis with ANOVA or
multiple regression. Some general guidelines for choosing a suitable
transformation have been suggested for situations in which a specific
transformation is often successful (cf. Kirk, 1968; Mosteller and Tukey, 1977). For
proportions an appropriate transformation is the arcsine transformation: f(x) = 2
arcsin √x, or the logit transformation: f(x) = ln(x/(1-x)). When the dependent

variable is a frequency count of events with a small probability, such as the
number of errors made in a school essay, the data tend to follow a Poisson

                                           
    1The models are identical, but the test results may diverge somewhat because the
estimation methods are different.
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distribution, which can often be normalized by taking the square root of the scores:
f(x) = √x. When the data are highly skewed, which is usually the case if, for

instance, reaction time is the dependent variable, a logarithmic transformation is
often used: f(x) = ln(x), or the reciprocal transformation: f(x)=1/x. For reaction
times the reciprocal transformation has the nice property that it transforms a
variable with an obvious interpretation: reaction time, into another variable with
an equally obvious interpretation: reaction speed.

The modern approach to the problem of non-normally distributed variables is
to include the necessary transformation and the choice of the appropriate error
distribution (not necessarily a normal distribution) explicitly in the statistical
model. This class of statistical models is called generalized linear models
(McCullagh & Nelder, 1983, 1989). Generalized linear models are defined by three
components: 1) a linear regression equation, 2) a specific error distribution, and 3)
a link function which is the transformation that links the predicted values for the
dependent variable to the observed values. If the link function is the identity
function (f(x)=x) and the error distribution is normal, the generalized linear model
simplifies to ordinary multiple regression analysis. For other link functions and
error distributions, the generalized linear model is estimated by complicated
maximum likelihood procedures (cf. McCullagh & Nelder, 1983, 1989), but the
results can be interpreted much as if they came from an ordinary linear model (cf.
Aitkin et al., 1989, for examples).

Multilevel generalized models have been described by Wong and Mason
(1985), Longford (1988, 1990), Mislevy and Bock (1989), and Goldstein (1991). For
hierarchical regression models Longford has implemented several generalized
linear models in VARCL. The basic algorithm is based on an iteratively
reweighted least squares procedure, which is carried out together with the
standard iterative procedure for the variance components (Longford, 1988, 1990).
The link functions presently supported are the logistic link function for binary
(dichotomous) and binomial data (proportions) (both are designated by the
program as binomial data: dichotomous data are binomial data with only one
trial), the logarithmic function for Poisson data, and the reciprocal link function
for gamma distributed data. Comparable analyses can be carried out with MLn,
using macro's to carry out the necessary transformations. Since the MLn
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procedure is highly complicated, while the interpretation problems are analogous,
I limit myself to an analysis of binomial data with VARCL.1 The analysis
presented below uses the logistic or logit link function; analyses using the
logarithmic and the reciprocal link functions follow similar lines.

The example concerns data from a meta-analysis of studies that compared face-to-
face, telephone, and mail surveys on various indicators of data quality (De Leeuw,
1992; for a more thorough analysis see Hox & De Leeuw, 1994). One of these
indicators is the response rate; the number of completed interviews divided by the
total number of eligible sample units. Overall, the response rates differ between
the three data collection methods. In addition, the response rates also differ across
studies, which makes it interesting to analyze what study characteristics account
for these differences.

These meta-analysis data have a multilevel structure. The lowest level is the
`condition-level,' and the higher level is the `study-level.' There are three variables
at the condition level: the number of completed interviews in that specific
condition, the number of eligible respondents in that condition, and a categorical
variable indicating the data collection method used. The categorical data collection
variable has three categories: `face-to-face', `telephone' and `mail.' To use it in the
regression equation, it is recoded into two dummy variables: a `telephone-dummy'
and a `mail-dummy.' In the `mail' condition, the mail-dummy equals one, and in
the other two conditions it equals zero. In the `telephone' condition, the
telephone-dummy equals one, and in the other two conditions it equals zero. The
face to face condition is coded by a zero for both the telephone- and the
mail-dummy. In this coding scheme the face-to-face condition is the baseline
against which the two other conditions are compared.2 There are three variables at

                                           
    1Macro's allow users to implement their own solution. The basic procedure is described in
Prosser et al., 1991. Goldstein (1994) descibes a new version of the ML3 macro that is more
accurate than the previous version or the VARCL procedure used here. Since this new macro
is rather complicated it is not used here. MLn has a more elaborate macro language. Also, the
program MIXOR by Hedeker (1993) models ordinal data, which includes binary data as a
special case.

    2All coding schemes code a categorical variable with k categories into k-1 dummy variables.
Cohen & Cohen (1983) and Kerlinger & Pedhazur (1973) discuss other coding schemes. Both
VARCL and MLn have built-in provisions to generate dummy variables for categorical
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the study level: the year of publication, the saliency of the questionnaire topic, and
the methodological quality of the research. Most studies compared only two of the
three data collection methods, a few compared all three. Omitting missing values,
we have 45 studies in which a total of 99 data collection conditions are compared.

The dependent variable is the response rate. This variable is a proportion: the
number of completed interviews divided by the number of eligible respondents. If
we model these proportions directly by normal regression methods, we encounter
two critical problems. The first problem is the fact that proportions do not have a
normal distribution, but a binomial distribution, which (especially with extreme
proportions and/or small samples) invalidates several assumptions of the normal
regression method. The second problem is that a normal regression equation
might easily predict values larger than 1 or smaller than 0 for the response rate,
which are impossible values for proportions. Using the generalized linear
(regression) model for the proportion p of potential respondents that are
responding to a survey solves both problems, which makes it a more appropriate
model for these data.

As I outlined above, the generalized linear model has three distinct
components: 1) a linear regression equation, 2) a specific error distribution, and 3)
a link function. The link function to be used for binomial data is the logit function,
which is defined as logit(x) = ln(x/(1-x). The corresponding error function is the
binomial distribution. Finally, using a logit regression model for the probability p
allows us to use a linear regression model for the logits of the probabilities.

The hierarchical generalized linear model for our response rate data can be
described as follows. In each group we have a number of individuals who may or
may not respond. The population probability of responding is given by Πij, that is,
for each individual r in each condition i of study j the probability of responding is
the same. Note that we could have a model where each individual's probability of
responding varies, with individual level covariates to model this variation. Then,

                                                                                                                                    
explanatory variables, with the first category (coded '1') as the baseline. Since dummy
variables all derive from the same categorical variable, they are not independent. For this
reason, when the effect of a categorical variable is assumed to vary between groups, all
corresponding dummy variables must be declared random, and their slope-by-slope
covariances should not be set to zero (cf. Longford, 1990).
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we would model this as a three-level model, with binary outcomes at the lowest
(individual) level. Since in this meta-analysis example we do not have individual
data, the lowest level is the condition-level, with conditions (data collection
methods) nested within studies.

Let Pij be the observed proportion respondents in condition i of study j. While
Pij has a binomial distribution, logit (Pij) has a distribution that is approximately
normal (McCullagh & Nelder, 1989).1 Thus, at the lowest level, we use a linear
regression equation to predict logit (Pij). The simplest model, corresponding to the
intercept-only model in ordinary multilevel regression analysis is given by:

logit (Pij) = β0j (4.5)

Note that the usual lowest level error term eij is not included in equation (4.5). In
the binomial distribution the variance of the observed proportion depends only on
the population proportion Π. As a consequence, in the model described by equation
(4.5) the lowest level variance is determined completely by the predicted value for
Pij, therefore it does not enter the model as a separate term.2 In the models
presently analyzed by VARCL and MLn the equation for the lowest level variance
is given by:

VAR(Pij) = σ² (Πij * (1-Πij)) / nij (4.6)

In equation (4.6) σ² is a scale factor. Choosing the binomial distribution in VARCL
fixes σ² to a default value of 1.00. This means that the binomial model is assumed
to hold precisely, and the value 1.00 for the lowest level variance σ² is not
interpreted. It is possible to fix σ² at a value different from 1.00 to model
deviations from the binomial distribution, such as overdispersion caused by
unmodeled grouping. If that is done, the implication is that equation (4.5) is

                                           
    1We ignore complications arising from different group sizes here, the multilevel software
makes all necessary adjustments automatically.

    2This is similar to the meta-analysis model in section 4.1. In both cases the lowest level
variance is known. However, in the meta-analysis model this variance must be supplied, while
in the model for proportions it is automatically supplied because it is a function of the estimate
P.
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extended with an extra error term eij, the overdispersion factor.1

The model in equation (4.5) can be extended to include an explanatory
variable Xij (e.g., a variable describing the condition as a mail or face-to-face
condition) at the condition level:

logit (Pij) = β0j + ß1j Xij (4.7)

The regression coefficients beta are assumed to vary across studies, and this
variation is modeled by the study level variable Zj in the usual second level
regression equations:

ß0j = γ00 + γ01 Zj + u0j (4.8a)
ß1j = γ10 + γ11 Zj + u1j (4.8b)

By substituting (4.8a) and (4.8b) into (4.7) we get the multilevel model:

logit (Pij) = γ00 + γ10Xij + γ01 Zj + γ11Xij Zj + u0j + u1j Xij (4.9)

It should be kept in mind that the interpretation of the regression parameters in
(4.9) is not in terms of the response proportions we want to analyze, but in terms of
the underlying variate defined by the logit transformation logit(x) = ln(x/(1-x)).
The logit link function transforms the proportions, which are between 0.00 and
1.00 by definition, into values that range from -∞ to +∞. The logit link is

nonlinear, and in effect assumes that near the extremes of 0.00 and 1.00 it
becomes more difficult to produce a change in the dependent variable (the
proportion). For a quick examination of the analysis results we can simply inspect
the regression parameters as calculated by the program. To understand the
implications of the regression coefficients for the proportions we are modeling, we
must transform their values back to the original scale.2

With VARCL, specifying the binomial distribution automatically selects the
logit link function. Next, the user has to provide the dependent variable. VARCL

                                           
    1VARCL can fix the extrabinomial variance to some value other than 1. MLn can also
estimate the amount of overdispersion and test it for significance.

    2The inverse function for the logit is g(x)=exp(x)/(1+exp(x)). We could call this the expit.
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does not expect a proportion as direct input; the user must provide the variable
that contains the number of completed interviews and the variable that contains
the so-called `binomial counts', in our example the total number of eligible
respondents in the sample.1

The `intercept-only' model for our example data is given by the lowest level
regression model:

logit (Pij) = β0j (4.10)

where the random coefficient ß0j is modeled by:

ß0j = γ00 + u0j (4.11)

which leads by substitution to:

logit (Pij) = γ00 + u0j (4.12)

Table 4.2 below presents the results for the ‘intercept-only’ model:

Table 4.2 Response rates, intercept-only model
__________________________________________________________
intercept (γ00) .72

var sigma SE(s)
condition level (σ²) 1.00 1.00
study level (u00) .57 .75 .08
__________________________________________________________

The intercept γ00 is estimated as 0.72. As noted before, this refers to the underlying
distribution established by the logistic link function, and not to the proportions
themselves. To determine the expected proportion, we must use the inverse
transformation for the logistic link function, given by g(x)=exp(x)/(1+exp(x)). Using
this inverse function we obtain: exp(0.72)/(1+exp(0.72)=2.05/3.05=0.67. Thus, the
estimated intercept of 0.72 translates back to an expected proportion of 0.67. This
is not precisely equal to the value of 0.69 that we get as the mean proportion

                                           
    1If the dependent variable is dichotomous, the binomial count is given as 1. This models a
binomial distribution with 1 trial, which is also known as the Bernouilli distribution.
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computed by VARCL just after it has finished reading the data. However, this is
as it should be, since we are using a nonlinear link function, and the value for the
intercept refers to the intercept of the underlying variate. Transforming that value
back to a proportion is not the same as computing the intercept for the proportions
themselves. Nevertheless, when the proportions are not very close to 1 or 0, the
difference is usually rather small.

The value of precisely 1.00 for the variance at the lowest level looks a bit
strange. As I explained above, in the binomial distribution (and also in the Poisson
and gamma distributions supported by VARCL), the lowest level variance is
completely determined when the mean (which in the binomial case is the
proportion) is known. Therefore, in these models σ² has no useful interpretation; it
simply defines the scale for the underlying normal variate. By default σ² is fixed at
1.00, which is equivalent to the assumption that the binomial (Poisson, gamma)
distribution holds exactly. In some applications the variance of the error
distribution turns out to be much larger than expected; there is overdispersion (cf.
McCullagh & Nelder, 1989; Aitkin et al., 1989). Such overdispersion may be
modeled by setting σ² to a value larger than 1.00 (in VARCL) or by estimating the
amount of overdispersion (in MLn). Since σ² is not interpreted, I leave it out of all
subsequent tables.

The next model adds the condition level dummy variables X1 for
`telephone-dummy' and X2 for `mail-dummy,' assuming fixed regression slopes.
The equation at the lowest (condition) level is:

logit (Pij) = ß0j + ß1j X1ij + ß2j X2ij, (4.13)

and at the study level:

ß0j = γ00 + u0j (4.14a)
ß1j = γ10 (4.14b)
ß2j = γ20 (4.14c)

By substituting (4.14a) to (4.14c) into (4.13) we obtain:
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logit (Pij) = γ00 + γ10X1ij + γ20X2ij + u0j (4.15)

The results are in Table 4.3:

Table 4.3. Response rates, fixed effect model
_________________________________________________

coeff. SE p
Intercept .99
X1: tel-dummy -.25 .02 .00
X2: mail-dummy -.62 .03 .00

var sigma SE(s)
study level (u00) .52 .72 .08
_________________________________________________

The intercept represents the condition in which both explanatory variables X1 and
X2 are zero. When X1 (telephone-dummy)=0 and X2 (mail-dummy)=0, we have the
face-to-face condition. Thus, the value for the intercept Table 4.3 estimates the
expected response in the face-to-face condition, and the expected response in this
condition Yftf equals 0.99. The large negative values for the slope coefficients for
the telephone and mail dummy-variables indicate that in these conditions the
expected response is much lower. To find out how much lower, we must use the
regression equation to predict the response in the three conditions, and transform
these values (which refer to the underlying variate) back to proportions. For the
telephone condition, that is coded by X1=1 and X2=0, the regression equation reads:
Y=0.99-0.25=0.74, and for the mail condition, that is coded by X1=0 and X2=1, it
reads Y=0.99-0.62=0.37. The predicted values for Y in the three conditions again
refer to the underlying variable, which has to be transformed back to proportions
for interpretation (using the inverse transformation for the logit function given
earlier). Translating back to proportions gives us predicted proportions of 0.73 in
the face-to-face condition, 0.68 in the telephone condition, and 0.59 in the mail
condition.

The intercept variation σ00 on the study level is obviously significant, and we may
attempt to explain it by the known differences between the studies. In our
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example data we have three study level explanatory variables: year of publication,
salience of questionnaire topic, and research quality. Since not all studies compare
all three data collection methods, it is quite possible that study level variables also
explain between condition variance. For instance, if older studies tend to have a
higher response rate, and the telephone method is only included in the more
recent studies (telephone interviewing is, after all, a relatively new method), the
telephone condition may seem to be characterized by low response rates. In that
case, however, after correcting for the year of publication, the telephone response
rates should look better. We cannot inspect the condition level variance to see if
the higher level variables explain condition level variability, because the condition
level variance is fixed at 1.00, but we can scrutinize the regression coefficients for
the two dummy variables coding the telephone and mail condition to see whether
there is a substantial change when we go from one model to the next.

Of the three study level variables, only saliency turns out to make makes a
significant contribution to the regression equation. The equations for the model
including the study level explanatory variable saliency (Z1) are:

At the condition (lowest) level:

logit (Pij) = ß0j + ß1j X1ij + ß2j X2ij (4.16)

and at the study level:

ß0j = γ00 + γ01Z1j + u0j (4.17a)
ß1j = γ10 (4.17b)
ß2j = γ20 (4.17c)

By substituting (4.17a to (4.17c) into (4.16) we obtain:

logit (Pij) = γ00 + γ10X1ij + γ20X2ij + γ01Z1j + u0j (4.18)

The results are in Table 4 4:
Table 4.4. Response rates, fixed effect model, including saliency
____________________________________________________________

coeff.  SE  p
Intercept 1.97
X1: tel-dummy -.26 .02 .00
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X2: mail-dummy -.62 .03 .00
Z1: saliency -.50 .14 .00

var sigma SE(s)
study level (u00) .40 .63 .07
____________________________________________________________

Compared to the earlier results, the regression coefficients are about the same, but
the value for the intercept is different. This is not informative, because the
intercept almost always changes when other variables are added to or deleted from
the regression equation. In our case, the shift of the intercept value is caused by
including the study level explanatory variable `saliency' in the model. Saliency is
coded as: 1=very salient, 2=somewhat salient, and 3=not salient. The coded values
for `saliency' do not include the value 0. Since the value of 1.97 for the intercept
refers to the situation where all explanatory variables have the value zero, this
refers to a face to face survey where the saliency is equal to zero, meaning it is
extremely high, in fact beyond the saliency range in the set of studies under
review.

Until now, we have treated the two dummy variables as fixed. One could
argue that it doesn't make sense to model them as random, since the dummy
variables are simple dichotomies that code for our three experimental conditions.
The experimental conditions are under control of the investigator, and there is no
reason to expect their effect to vary from one experiment to another. But some
more thought leads to the conclusion that the situation is more complicated than it
seems. If we conduct a series of experiments, we would expect identical results
only if the research subjects were all sampled from exactly the same population,
and if the operations that define the experimental conditions were all carried out
in exactly the same way. In the present case, both assumptions are questionable.
In fact, some studies have sampled the general population, while others sample
special populations such as college students. Similarly, although most articles give
only a very short description of the procedures that were actually used to
implement the data collection methods, it is highly likely that they were not all
identical. As a consequence, even if we don't know all the details about the
populations sampled and the procedures used, we may expect much variation
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between the conditions in the way they actually were implemented. This should
result in random regression coefficients in our model. Thus, we analyze a model in
which the slope coefficients for the dummy variables X1 (telephone-dummy) and X2

(mail-dummy) are assumed to be random across studies.

At the condition (lowest) level we have:

logit (Pij) = ß0j + ß1j X1ij + ß2j X2ij (4.19)

and at the study level:

ß0j = γ00 + γ01Z1j +u0j (4.20a)
ß1j = γ10 + u1j (4.20b)
ß2j = γ20 + u2j (4.20c)

By substituting (4.20a) to (4.20c) into (4.19) we obtain:

logit (Pij) = γ00 + γ10X1ij + γ20X2ij + γ01Z1j +

+ u0j + u1j X1ij + u2j X2ij (4.21)

Table 4.5 below presents the estimates for the model of (4.21):
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Table 4.5 Response rates, random coefficient model
____________________________________________________________

coeff  SE  p
Intercept 2.04
X1: tel-dummy -.23 .11 .04
X2: mail-dummy -.54 .12 .00
Z1: saliency -.56 .12 .00

study level var sigma SE(s)
intercept (u00) .33 .57 .07
telephone (u11) .39 .63 .08
mail (u22) .31 .56 .10
____________________________________________________________

Indeed, the variance of the regression slopes for the two dummy variables is large
and highly significant. The last logical step would be to introduce interaction
variables to model the random coefficients. In our example data, it turns out that
none of the available interaction variables explains the random variation of the
regression coefficients (none of the regression slopes for the cross-level interactions
even approached significance). It is likely that the variance of the regression slopes
over studies is the result of uncountable variations in the way the different data
collection methods were actually implemented. Unfortunately, the articles
reviewed in the meta-analysis do not give all the necessary details, and therefore it
is impossible to define and code additional explanatory study level variables to
model them, so they show up in the random variation of the regression coefficients.

As I noted above, the regression coefficients have to be interpreted in terms of
the underlying variate. Also, the logit transformation implies that raising the
response becomes more difficult as we approach the limit of 1.00. To show what
this means, I present the predicted response for the three methods as logits (in
parentheses) and proportions in the next table, both for a very salient (saliency=1)
and a non-salient (saliency=3) questionnaire topic. (To compute these numbers we
must fill in the regression equation implied by Table 4.5 and use the inverse logit
transformation given earlier to transform the predicted logits back to proportions.)
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Table 4.6 Response rates for the three methods, based on Table 4.5
_________________________________________________________________________
Topic Face-to-face Telephone  Mail
Not salient (.37) .59 (.14) .54 (-.17) .46
Very salient (1.49) .82 (1.26) .79 (.95) .72
_________________________________________________________________________

When the topic is very salient, the response rate is generally high, and in this
condition the advantage of the face-to-face survey is smaller than with a
non-salient topic, where the face-to-face situation apparently is a much better
method to persuade potential respondents to cooperate.

The random coefficient model leads to another interesting conclusion. In
general, telephone surveys obtain a lower response rate than face-to-face surveys.
On the underlying normal scale, the regression coefficient for `telephone' is -0.23.
However, this regression coefficient has a large variance across studies: σ11=0.39.
The corresponding standard deviation is 0.63. Using the standard normal
distribution, we can calculate that in 36% of similarly conducted studies this
regression coefficient is actually larger than zero! Since in the binomial
distribution the distribution of the random regression coefficients is probably
skewed, we should not interpret this 36% as an exact prediction of what would
happen in new replications. Still, it is instructive to see that, even if there is little
doubt that on the average the telephone interview has a lower response rate than
the face-to-face interview, there is still an appreciable chance that in a specific
study we find the opposite relation.
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5. Structural Models for Multilevel Data

The models described in the previous chapters are all basically multilevel variants
of the conventional multiple regression model. This is not as restrictive as it may
seem, since the multiple regression model is very flexible and can be used in many
different applications (for detailed examples see Cohen & Cohen, 1983). Still, there
are models that cannot be analyzed with multiple regression, notably factor
analysis and path analysis models.

A general approach that encompasses both factor and path analysis is
covariance structure analysis. Covariance structure models (sometimes simply but
inaccurately denoted as `Lisrel-models') can be viewed as a combination of a path
model and a factor model. The path model, which is often called the structural
model, specifies causal and predictive relationships between variables. These
variables may be observed variables and/or latent factors. The factor model, which
is often called the measurement model, specifies how the latent factors are
measured by the observed variables. The name `covariance structure analysis'
(CSA) derives from the usual practice of using the mathematical model to describe
the covariance matrix of the observed variables. Other names for this model are
structural equations models (SEM), structural models or path models with latent
variables.

Structural models for multilevel data have been elaborated, among others, by
Goldstein and McDonald (Goldstein & McDonald, 1988; McDonald & Goldstein,
1989), Muthén and Satorra (Muthén, 1989; Muthén & Satorra, 1989) and
Longford and Muthén (Longford & Muthén, 1992). Simple introductions are given
by Muthén (1994) and McDonald (1994), and the likelihood equations are given in
the literature cited above. This chapter focusses on a simplification proposed by
Muthén (1989), which makes it possible to use existing software (such as Lisrel,
Eqs, Liscomp) for the covariance structure analysis of multilevel data.

5.1 The Decomposition Model for a Hierarchical
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Population

Suppose we have data from N individuals, divided into G groups. The individual
data are collected in a p-variate vector Yig (subscript i for individuals, i=1..N;
subscript g for groups, g=1..G). Cronbach and Webb (1975) propose to decompose
the individual data Yig into a between groups component YB = .g and a within
groups component YW = Yig - .g. In other words, for each individual we replace the
observed Total score YT = Yig by its components: the group component YB (the
disaggregated group mean) and the individual component YW (the individual
deviation from the group mean.) These two components have the attractive
property that they are orthogonal and additive:

yT = yB + yW (5.1)

This decomposition can be used to compute a between groups covariance matrix SB

(the covariance matrix of the disaggregated group means YB) and a within groups
covariance matrix SW (the covariance matrix of the individual deviations from the
group means YW). The covariance matrices are also orthogonal and additive:

ST = SB + SW (5.2)

Härnqvist (1978) proposes to apply exploratory factor analysis to SB and SW.
However, the decomposition in equation (5.1) is a decomposition of the sample
data. Covariance structure models are confirmatory models for a population, and
to apply them to multilevel data we have to examine what the consequences are of
the decomposition proposed by Cronbach and Webb in the population.

Multilevel structural models assume that we have a population of individuals
that are divided into groups. If we decompose the population data we have, for the
population covariance matrices:

ΣΣT = ΣΣB + ΣΣW (5.3)

Covariance structure modeling assumes that the population covariance matrices
ΣΣB and ΣΣW can be described by separate models for the between groups and within
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groups structure. Unfortunately, we cannot simply use SB as an estimate of ΣΣB,
and SW for ΣΣW. The situation is a bit more complicated.

Muthén (1989) shows that an unbiased estimate of the population within groups
covariance matrix ΣΣW is given by the pooled within groups covariance matrix SPW,
calculated in the sample by:

G n

Σ Σ  (Yig -Y .g) (Yig -Y .g)’

SPW = ____________________ (5.4)
N - G

Equation (5.4) corresponds to the conventional equation for the covariance matrix
of the individual deviation scores, with N-G in the denominator instead of the
usual N-1.

Since the pooled within groups covariance matrix SPW is an unbiased estimate
of the population within groups covariance matrix ΣΣW, we can estimate the
population within group structure by constructing and testing a model for SPW.

The between groups covariance matrix for the disaggregated group means SB,

calculated in the sample is given by:

G

Σ ng (Y.. –Y.g) (Y.. –Y.g)’

SB = ______________________ (5.5)
G

Unfortunately, the sample between groups covariance matrix SB is not a simple
estimator of the population between groups covariance matrix ΣΣB. Instead, SB is an
estimator of the sum of two matrices:

 ∧
SB =   ΣΣW+cΣΣB (5.6)
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where c is a scaling factor based on the group size.
Thus, if we want to model the between groups structure, we cannot simply

construct and test a model for SB, because SB estimates a combination of ΣΣW and

ΣΣB. Instead, we have to specify for SB two models: one for the within groups
structure and one for the between groups structure. Muthén (1989) proposes to use
the multigroup option of conventional covariance structure software to analyze
these models simultaneously. The procedure is that we specify two groups, with
covariance matrices SPW and SB (based on N-G and G observations). The model for

ΣΣW must be specified for both SPW and SB, with equality restrictions between both
`groups' to guarantee that we are indeed estimating the same model in both
covariance matrices, and the model for ΣΣB is specified for SB, with the scale factor c
built into the model.

The reasoning given above applies only in the so-called balanced case, that is,
if all groups have the same group. In the balanced case, the scale factor c is equal
to the common group size n. In the unbalanced case, where the group sizes differ,
using conventional software requires a complicated modeling scheme that creates
a different `group' for each set of groups with the same group size. In many cases
this is not practical. As a solution, Muthén (1989, 1990) proposes to simply proceed
as if the group sizes were equal, and calculate the scaling factor as a combination
of the observed group sizes given by:

        G
N² - Σ n²g

C =   _____________ (5.7).
N (G-1)

This solution, which McDonald (1994) calls a pseudobalanced solution, is not a full
likelihood solution. However, Muthén (1990) shows that SB, as calculated in
equation (5.5), is a consistent estimator of ΣΣB. This means that with large samples

(of both individuals and groups!) SB generally becomes a close estimate of ΣΣB. Since
SB is not a maximum likelihood estimator, the analysis produces only approximate
parameter estimates and standard errors. However, when the group sizes are not
extremely different, the pseudobalanced estimates may be close enough to the full
maximum likelihood estimates to be useful in their own right. Comparisons of
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pseudobalanced estimates with full maximum likelihood estimates or with known
population values have been made by Muthén (1990, 1994), Hox (1993), and
McDonald (1994). Their main conclusion is that the pseudobalanced estimates are
fairly accurate and useful for a variety of multilevel problems.

The multilevel part of the covariance structure model outlined above is
simpler than that of the multilevel regression model. It is comparable to the
multilevel regression model with random variation of the intercepts. There is no
provision for randomly varying slopes (factor loadings and path coefficients).
Although it would be possible to include cross-level interactions, introducing
interaction variables of any kind in covariance structure models is neither simple
nor elegant (cf. Bollen, 1989). An interesting approach would be to allow for
different within groups covariance matrices in different subsamples.

5.2 An Example of a Multilevel Factor Analysis

The example data are taken from Van Peet (1992). They are the scores on six
intelligence measures of 187 children from 37 families. The six intelligence
measures are: word list, cards, matrices, figures, animals, and occupations. The
data have a multilevel structure, with children nested within families. Assuming
that intelligence is strongly influenced by shared genetic and environmental
influences in the families, we may expect rather strong between family effects.

To begin, the individual scores on the six measures are decomposed into
disaggregated group means and individual deviations from the group means
(Cronbach & Webb, 1975, cf. section 5.1). Table 5.1 shows the means and
variances of the scores, and the Intra Class Correlation (ICC), which is an estimate
of the proportion of between family variance.1

Table 5.1. Means, variances and ICC for family data
_________________________________________________________________

     TotalFamily Individual
Measure Mean  Var.              Var.   Var.               ICC
                                           
    1The ICC can be estimated by analysis of variance procedures (Hays, 1994), or from the
intecept-only model using a multilevel approach. Here, it is estimated from the pooled within
groups and between groups variances.
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Word list 29.80 15.21 7.48 7.73 .37
Cards 32.68 28.47 13.65 14.82 .35
Matrices 31.73 16.38 5.24 11.14 .15
Figures 27.11 21.23 6.84 14.38 .16
Animals 28.65 22.82 8.46 14.36 .22
Occupat. 28.28 21.42 9.11 12.31 .28
_________________________________________________________________

The results in Table 5.1 suggest that there are indeed sizeable family effects. To
analyze the factor structure of the six measures on the individual and family level,
we compute the pooled within family covariance matrix SPW and the between
family covariance matrix SB.

Typically, there are many more individuals than groups, and hence the
number of observations for the pooled within groups covariance matrix (N-G) is
much larger than the number of observations for the between groups covariance
matrix (G). In this case, the number of observations on the individual level is 187-
37=150, while on the family level it is 37. Thus, it makes sense to start on the
individual level by constructing a model for SPW.

An exploratory factor analysis on SPW suggests two factors, with the first
three measures loading on the first factor, and the last three measures on the last.
A confirmatory factor analysis on SPW confirms this model: χ²=7.21, df=8, p=.51. A
model with just one general factor is rejected: χ²=44.87, df=9, p=.00. Figure 5.1 on
the next page presents the conventional graphic representation of the individual
level (within families) model.

The next step is the specification of a family model. For this, we must analyze
the matrices SPW and SB simultaneously with the multigroup procedure. First we
specify the individual model for both `groups' using equality restrictions across
both groups for all parameters. Next, we must specify an additional family model
for SB.
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We start by estimating some `benchmark' models, to test whether there is any
between family structure at all. The most simple model is the null model; this
simply omits the specification of a family level model. If the null model holds, there
is no family level structure; all covariances in SB are the result of sampling
individual variation. As a result, we may as well continue our analyses using
simple single level analysis methods. The next model is the independence model;
this specifies only variances on the family level, but no covariances. A graphical
representation of the independence model for SB is given in Figure 5.2 on the next
page.
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Note that in Figure 5.2 I have fixed the loadings for the family level variables (the

six `factors' in the circles going from `wl' to `occ') not to one, as is usual, but to 2.25,
which is the square root of the scale factor. This is to transform the family level
variables to their proper scale. Since this is a fixed value, it has no influence on the
global fit of the model, but it is necessary for a correct interpretation.

If the independence model holds, there is family level variance, but no
substantively interesting covariance structure. Nevertheless, in this case it is still
useful to apply multilevel analysis, because this produces unbiased estimates of
the individual model parameters. If the independence model is rejected, there is
some kind of covariance structure on the family level. To examine the best possible
fit given the individual level model, we can estimate the maximal model; this fits a
full covariance matrix to the family level observations. This places no restrictions
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on the family model.1 Table 5.2 shows the results of estimating these models:

Table 5.2  Comparison of family level benchmark models
_______________________________________________________
Family model Chi-square df p

Null model 125.41 29 .00
Independence model 52.47 23 .00
Maximum model 7.21 8 .51
_______________________________________________________

Both the null model and the independence model are rejected. Next, we specify for
the family level the same two models we have used for the individual level. Again,
the two factor model fits well. However, on the family level a one factor model fits
almost as well, as Table 5.3 shows:

Table 5.3  Comparison of family level factor models
_______________________________________________________
Family model Chi-square df p

One factor 21.28 17 .21
Two factors 20.06 16 .22
_______________________________________________________

The principle of using the simplest model that fits well leads to acceptance of the
one factor model on the family level, see Figure 5.3 on the next page. The factor
loadings (standardized to a common metric) are in Table 5.4:

                                           
    1We can specify the maximal model for the between structure, and then explore the within
model simultaneously in both SPW and SB. However, since SPW is generally based on many
more observations than SB, not much information is lost by only analyzing SPW, while in the
latter case the setups are much simpler and need less computing time.



97

Table 5.4 Individual and family model, standardized factor loadings
________________________________________________________________

Individual        Family
 I II I

Word list .30* - .84*
Cards .52 - .78
Matrices .70 - 1.02
Figures - .30 .58
Animals - .70 .86
Occupations - .48 .33n

________________________________________________________________
Correlation between individual factors: 0.22ns; * = fixed; ns = not significant

Table 5.4 suggests an interpretation that on the family level, where the effects of
the shared genetic and environmental influences are visible, one general (g) factor
is sufficient to explain the covariances between the intelligence measures. On the
individual level, where the effects of individual idiosyncratic influences are visible,
we need two factors. The first factor could be interpreted as `reasoning,' and the
second as `fluency.' These results could be fitted into Cattel's (1971) theory of fluid
and crystallized intelligence, which states that as a result of individual factors
(education, physical and social environment) the general g-factor `crystallizes' into
specific individual competencies.
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5.3 An Example of a Multilevel Path Analysis

The data for this example are from a study by Schijf and Dronkers (1991). They
analyzed data from 1379 pupils in 58 schools.1 We have the following pupil level
variables: father's occupational status `focc,' father's education `feduc,' mother's
education `meduc,' family size `fsize,' sex `sex,' how many times a class had been
repeated in the past `repeat,' result of GALO school test `GALO,' and teacher's
advice about secondary education `advice.' On the school level we have only one
variable: the school's denomination `denom.' Denomination is coded 1=protestant,
2=nondenominational, 3=catholic (categories based on optimal scaling). The
research question is whether the school's denomination affects the GALO score
and the teacher's advice, after the other individual variables have been accounted
for.

We can use a sequence of multilevel regression models to answer this
question. The advantage of a path model is that we can specify one model that
describes all hypothesized relations between independent, intervening, and
dependent variables. However, we have multilevel data, with one variable on the
school level, so we must use a multilevel model to analyze these data.

A multilevel path model uses the same approach outlined above for the
multilevel factor analysis. We decompose the individual variables into
disaggregated group means and individual deviations from the group means, and
calculate the pooled within groups covariance matrix SPW and the between groups
covariance matrix SB. Next, we construct models for ΣΣW and ΣΣB, and use the
multigroup approach as illustrated above.

With multilevel path models we will often have the complication that we have
pure group level variables (global variables in the terminology of chapter one). In
our example, we have the global variable `denomination.' This variable does not
exist on the individual level. We can of course disaggregate `denomination' to the
individual level. However, this disaggregated variable is constant within each
school, and as a result the variance and covariances with the individual deviation

                                           
    1The data were collected in 1971. The example uses only those pupils with complete data on
all variables.
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scores are all zero. This problem can be solved by viewing the school level variable
`denomination' as a variable that is systematically missing in the pupil level data.
Bollen (1989) and Jöreskog and Sörbom (1989) describe how systematically
missing variables can be handled in Lisrel.1

Basically, the trick is that the variable `denomination' is included in the
(school level) between schools covariance matrix in the usual way. In the (pupil
level) within schools covariance matrix, we include `denomination' as a variable
with a variance equal to one and all covariances with other variables equal to zero.
In the within school models, there are no paths pointing to or from this observed
variable. As a consequence, we estimate for this variable only a residual error
variance of 1.00. Thus, inclusion of this variable has no influence on the within
school estimates or the overall chi-square. There is only one problem; Lisrel
assumes that this variable represents a real observed variable, and will include it
when it enumerates the degrees of freedom for the within schools model. As a
result, the df and p-values (and most fit-indices) in the Lisrel output are incorrect,
which must be corrected by hand (cf. Jöreskog & Sörbom, 1989). Some software
(notably Bentler's Eqs, cf. Bentler, 1993), can handle multigroup models with
different numbers of observed variables in the various groups, which makes this
kind of modeling much simpler.

After calculating the pooled within and between groups covariance matrices,
the first step in modeling the Schijf/Dronkers data is again to construct a within
schools (pupil level) model. I used earlier analyses by Schijf and Dronkers
(Dronkers & Schijf, 1986; Schijf & Dronkers, 1990, 1991) to arrive at the following
pupil level model shown on the next page.

The pupil level path model has one latent factor `SES' measured by the
observed variables `focc,' `fedu' and `medu.' An analysis of the pooled within
schools matrix SPW only with this model gives a chi-square of 32.8, with df=15 and
p=0.01. The goodness-of-fit indices are: GFI=.99 and AGFI=.99. Given the large
sample size (the pupil level data have 1379-58=1321 independent observations,)
the high goodness-of-fit and the absence of large modification indices in the Lisrel

                                           
    1Bollen gives a more detailed description of the model, but Jöreskog and Sörbom's account
is to be preferred when a model must be specified, because they use some Lisrel features that
were not yet available when Bollen wrote his book.
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output, I decide to accept this model.

Inspection of the intra class correlations tells us that the school level variance for
the pupil variable `sex' is zero. This simply means that the proportion of girls is
almost the same in all schools. Therefore, this variable is eliminated from the
school level covariance matrix by treating it as a variable with systematically
missing values, in the same way the school level variable `denomination' is
handled on the individual level.1

The next step is again specifying a school level model for SB. First we specify

the pupil level model constructed earlier for both SPW and SB, with equality
restrictions across the two `groups' for all corresponding parameters. We start the
analysis of the between groups matrix SB by specifying three benchmark models:
the null model, the independence model, and the maximum model. This produces
the following results:

                                           
    1Since sex is eliminated from the school level on empirical grounds, rather than because of
the design of the data, it is not necessary to correct the degrees of freedom.
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Table 5.5 School level benchmark models
___________________________________________________________
Model Chi-square df  p
___________________________________________________________
Null 623 51 .00
Independence 392 44 .00
Maximum 39 23 .02
___________________________________________________________

Table 5.5. shows that the null and independence model are rejected, there is some
kind of school level covariance structure. The maximum model specifies a
saturated model for SB, meaning that it produces an estimate of the full covariance
matrix ΣΣB.1 Inspection of this covariance matrix reveals that on the school level the
three SES indicators `focc,' `feduc' and `meduc' have extremely high correlations
(all intercorrelations are larger than .98). A school-level factor model for these
three indicators does not converge, and is therefore replaced by a component
model. Thus, on the school level we have a path model without latent variables
(other than having latent variables to represent the school level).

The school level model resembles the individual level model, but with fewer
significant paths. The fit of the model is acceptable (chi-square=58, df=40, p=.03).
The school level variable `denomination' turns out to have an effect on only one
variable, the GALO test score. The graphical representation of this final model
(chi-squared=64, df=47, p=.05) is given in Figure 5.5 on the next page.

In the multilevel regression analyses presented by Schijf and Dronkers
(1991) denomination had a significant effect on both the teachers' advice and on
the GALO test score. The path model presented here shows that the main
influence is through the GALO test score; the different advice given by teachers in
schools of different denominations are apparently the result of differences in
GALO test scores between such schools. This is precisely the kind of result that a
sequence of regression analyses cannot show.

                                           
    1The null and maximum model can be used to define goodness-of-fit measures. Since the
maximum model has a p-value of .02, it is likely that all school level models will be significant.
In such situations, goodness-of-fit indices are a useful alternative to significance testing.
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Figure 5.5 also shows that `SES' has a school level effect on the variables `repeat,'
`GALO,' and `advice.' The interpretation is not that some schools simply happen to
have more high SES pupils and therefore perform better; sampling differences
between schools in SES composition are accounted for in the pupil model that is
also fitted for the school level covariances. Instead, the substantive interpretation
of the school level results must be in terms of some kind of contextual or
systematic selection effect. It appears that the concentration of high or low SES
pupils has its own effect on the school career variables.
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5.4 Some Implementation Details

For multilevel factor and path analyses we must first compute the within and
between groups covariance matrices SPW and SB, and the scale factor c.
Implementation of the pseudobalanced model in a conventional covariance
structure analysis program such as Lisrel, Liscomp or Eqs is complex. For
example, let us examine the Lisrel setup for the factor analysis of the Van Peet
data in section 5.2.

The Van Peet data consist of six test-scores for 187 children from 37 families.
In the analysis, we treat the covariance matrices SPW and SB as if they came from
two different groups, with 150 and 37 observations. It is convenient to let SPW be
the first group. The two-factor model for SPW is specified as usual, with the factor
loadings in the Lisrel matrix Lambda-Y, the covariances between the two factors
in the matrix Psi, and the residual error variances in the vector Theta-Epsilon.

To specify the complete model in Figure 5.3, we must set the number of
factors at nine: the two regular factors for SPW, and for SB the six factors that
correspond to the six variables at the between families level, plus the one factor
that is sufficient to explain the between families covariation. The last seven factors
are not used in the model for SPW, and as a result Lisrel sets all their loadings,
covariances etcetera to zero. In the model for SB they are used. The six factors that
correspond to the six variables at the between families level have fixed loadings on
their corresponding variable with loading equal to √c, the square root of the

scaling factor c. The one between families factor that explains the between families
covariation has loadings on all six between families variables. These are
represented as loadings from a factor on six other factors, which in Lisrel is
specified by estimating the corresponding elements in the regression matrix called
Beta. The residual variances for the between families model appear in the
diagonal of the factor covariance matrix Psi.

Since the between covariance matrix is orthogonal to the within covariance
matrix, the covariances between the within factors and all between factors must be
specified as zero. Also, the covariances among the six factors representing the
between families variables and the one factor used to explain them must be set at
zero.
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If we have a group variable, which has no variation on the within level,
things get even more complicated. For this group variable, we have in the pooled
within covariance matrix a row and column with all zeros and a one on the
diagonal. To model this variable, we must specify on the within groups level zero
factor loadings, and leave the residual error variance in theta-epsilon free, which
will of course be estimated as one. Since Lisrel will count this extra variable as an
ordinary observed variable, it will calculate the number of degrees of freedom
incorrectly, something which must then be adjusted by hand. All this leads to a
complicated Lisrel model. One result of these complications is that Lisrel
diagnoses the model as inadmissible, so the `admissibility check' must be set off.
Another complication is that Lisrel often cannot automatically find good starting
values for such models, and needs much more iterations than for the more usual
models.

Software that specifies the model in the form of equations, such as Eqs, is
somewhat easier to use. However, this software generally attempts to simplify the
modeling process by automatically assuming covariances between latent variables,
while for the between model most of these must be fixed at zero.1

For the computation of the pooled within and scaled between groups matrix
it is useful to employ a special preprocessor. Muthén has made available the
program BW (Muthén, 1989; Nelson & Muthén, 1991) that computes all statistics
needed for either the full maximum likelihood solution or the pseudobalanced
solution. Included with this book is the simpler program SPLIT2 that only
provides statistics for the pseudobalanced solution.

                                           
    1Lisrel8 comes with the simplified command language Simplis that is also equation-based,
and sidesteps all reference to the usual Lisrel matrices. Unfortunately, Simplis cannot handle
the more complex multilevel specifications. In general, it will not succeed in translating these
correctly into the usual matrix oriented Lisrel language.
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Appendix

Aggregating and Disaggregating in SPSS

A common procedure in multilevel analysis is to aggregate individual level
variables to higher levels. On the higher level, the scheme of page 2 calls such a
variable an analytical or a structural variable. In most cases, aggregation is used
to attach to higher level units (e.g., groups, classes, teachers) the mean value of a
lower level explanatory variable (an analytical variable). However, other
aggregation functions may also be useful. For instance, one may have the
hypothesis that classes that are heterogeneous with respect to some variable differ
from more homogeneous classes. In this case, the aggregated explanatory variable
would be the group's standard deviation or the range of the individual variable.
Another aggregated value that can be useful is the group size (which is a global
variable).

In SPSS/PC+, aggregation is handled by the procedure AGGREGATE. This
procedure produces a new file that contains the grouping variable and the (new)
aggregated variables. A simple setup to aggregate the variable IQ in a file with
grouping variable GROUPNR is as follows:

GET FILE `indfile.sys'.
AGGREGATE outfile='aggfile.sys'/BREAK=groupnr/
  meaniq=MEAN(iq)/stdeviq=SD(iq).

Disaggregation means adding group level variables to the individual data file.
This creates a file where the group level variables are repeated for all individuals
in the same group. In SPSS/PC+, this can be accomplished by the procedure JOIN
MATCH, using the so-called TABLE lookup. Before JOIN MATCH is used, the
individual and the group file must both be sorted on the group identification
variable. For instance, if we want to read the aggregated mean IQ and IQ
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standard deviation to the individual file, we have the following setup:

JOIN MATCH FILE='indfile.sys'/
  TABLE='aggfile.sys'/BY groupnr/MAP.

The example below is a complete setup that uses aggregation and disaggregation
to get group means and individual deviation scores for IQ:

GET FILE `indfile.sys'.
SORT groupnr.
SAVE FILE `indfile.sys'.
AGGREGATE outfile='aggfile.sys'/PRESORTED/BREAK=groupnr/
  meaniq=MEAN(iq)/stdeviq=SD(iq).
JOIN MATCH FILE='indfile.sys'/
  TABLE='aggfile.sys'/BY groupnr/MAP.
COMPUTE deviq=iq-meaniq.
save file `indfile2.sys'.

In this setup I use the AGGREGATE subcommand PRESORTED to indicate that
the file is already sorted on the BREAK variable groupnr, because this saves
computing time. The subcommand MAP on the JOIN MATCH procedure creates a
map of the new system file, indicating from which of the two old system files the
variables are taken. In this kind of `cutting and pasting' it is extremely important
to check the output of both AGGREGATE and JOIN MATCH very carefully to
make sure that the cases are indeed matched correctly.

It should be noted that the program HLM contains a built-in procedure for
centering explanatory variables. The program MLn has a procedure to add group
means to the individual data file, and commands to create centered and group-
centered variables.
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