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Abstract

This paper discusses two methodological issues regarding the analysis of longitudinal data using structural

equation modeling that emerged during the reconsideration of the analysis of a recent study on the relationship

between academic motivation and language achievement in elementary education [Stoel R.D., Peetsma, T.T.D. and

Roeleveld, J. (2003). Relations between the development of school investment, self-confidence and language

achievement in elementary education: a multivariate latent growth curve approach. Learning and individual

differences, 13, 313–333]. The issues are related to the factorial structure of the repeatedly measured variables, and

to the explanation of interindividual difference by means of covariates [see Stoel, R.D., Van den Wittenboer, G.

and Hox, J.J. (2004a). Including time-invariant covariates in the latent growth curve model. Structural Equation

Modeling, 11, 155–167, Stoel, R.D., Van den Wittenboer, G. and Hox, J.J. (2004b). Methodological issues in the

application of the latent growth curve model. In K. van Montfort, H. Oud, and A. Satorra (Eds.). Recent

developments on structural equation modeling: Theory and applications. (pp. 241–262). Amsterdam: Kluwer

Academic Press. It is illustrated that standard modeling practices may sometimes lead to incorrect conclusions

regarding the concepts under investigation, and that ideally alternative modeling possibilities should be considered

in order to check the adequacy of the standard practice.

D 2005 Elsevier Inc. All rights reserved.

Keywords: Motivation; Structural equation modeling; Latent growth curve analysis
1041-6080/$ -

doi:10.1016/j.l

B Author not

PROO).

T Correspond

E-mail add
see front matter D 2005 Elsevier Inc. All rights reserved.

indif.2005.07.006

e: This research was made possible by a grant from the Netherlands Organization for Scientific Research (NWO/

ing author. Tel.: +31 20 525 1529; fax: +31 20 525 1200.

ress: r.d.stoel@uva.nl (R.D. Stoel).



R.D. Stoel et al. / Learning and Individual Differences 16 (2006) 159–174160
1. Introduction

In the last decade there has been an increasing amount of studies on academic motivation that

adopted a longitudinal design. Longitudinal designs may provide important information for answering

longstanding questions regarding change and growth of individuals on motivation. In order to answer

such questions complex models, and techniques, have been developed, and these models and

techniques are now becoming part of the standard tool box of many scholars. Examples are structural

equation modeling and multilevel analysis of longitudinal data, latent class analysis, and (growth)

mixture modeling. However, because of the complexity of these techniques, the application is often

plagued by factors that may lead to incorrect estimates of the interesting parameters, and thus to

possibly incorrect conclusions. Standard, but sometimes insufficient, modeling practice may have

serious consequences for the substantive conclusions. This contribution discusses two methodological

issues regarding the analysis of longitudinal data using structural equation modeling that emerged

during the reconsideration of the analysis of a recent study on the relationship between academic

motivation and language achievement in elementary education (Stoel, Peetsma & Roeleveld, 2003).

The issues are related to the factorial structure of the repeatedly measured variables, and to the

explanation of interindividual difference by means of covariates. A more formal and detailed treatment

of these two issues is provided by Stoel, van den Wittenboer and Hox (2004a,b). The first purpose of

this paper is to illustrate that the standard approaches can be easily adapted to overcome these

inadequacies, and second to provide practical guidelines on how and when to do so. In the next

sections we will first describe the data, and the sample and the variables that were measured, then we

will provide a brief introduction into latent growth curve modeling, followed by an overview of the

analysis strategy and the results of Stoel, Peetsma and Roeleveld, and successively the two issues will

be discussed.
2. Latent growth curve modeling of motivation, school investment and language acquisition

The study of Stoel, Peetsma and Roeleveld (2003) was guided by the following main questions

and expectations: (1) How do school investment, self-confidence and language achievements

develop during elementary education (from kindergarten to secondary education)? An increase in

language achievement is expected, and a decrease in school investment during elementary

education. With respect to self-confidence, no expectation was formulated on the direction of

development during elementary education. (2) Is the developmental process of language

achievement in elementary education related to school investment and self-confidence? It is

expected that the developmental trajectories of language achievement, school investment and self-

confidence are mutually positively associated. With respect to school investment, this implies that

the more positive the developments in achievement and self-confidence, the less the decrease in

school investment. (3) To what extent is intelligence related to developmental trajectories in school

investment, self-confidence and language achievements in elementary education? It is expected that

intelligence accounts for a unique part of the variation in the developmental trajectories of language

achievement.

In order to answer these questions data from the large PRIMA cohort project in the Netherlands were

analyzed. These data consist of a subsample consisting of 2693 children in 214 elementary schools,
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measured at four consecutive points in time (every 2 years, from grade 2 at the age of 5 up to grade 8 at

the age of 11 years). Measurements of Language achievement, School Investment and Self-confidence

were available at each of the four time points, as well as a measure of intelligence. Language

achievement was measured by four different tests at different ages. The individual scores were

consequently transformed to one language ability scale, using OPLM-procedures from item-response

theory (Verhelst, Glas & Verstralen, 1993; Vierke, 1995). Because of the young age of the children, no

direct measurements of Self-confidence and School Investment were performed in the PRIMA project.

As a proxy, indicators were used taken from an instrument which was filled out by the teachers. In order

to have identical measurements over the years, only items that have been unchanged could be used. Both

Self-confidence and School Investment were each measured by two indicators at the four points in time.

Further information on the data and the sample is provided by Stoel, Peetsma and Roeleveld. Appendix

A presents the estimated covariance matrix and means vector.

To describe the development of each of these three concepts latent growth curve (LGC) modeling

(McArdle, 1986, 1988; Meredith & Tisak, 1990; Willett & Sayer, 1994) has been applied. LGC

analysis is a special type of structural equation model that lets repeated measures of a given concept

to be represented as a function of time and other measures (Willett & Sayer, 1994). A LGC analysis

assumes an individual growth curve for each subject to account for the development over time, with

the assumption that all subjects in a given population have developmental curves of the same

functional form (e.g. all linear), but with possibly different growth parameters, i.e. the (initial) level,

or intercept, and the growth rate, or slope. Regarding linear developmental curves, for example,

individual differences may be due to heterogeneity in the (initial) level, as well as heterogeneity in

the growth rate (or rate of change). So, subjects may differ in their level at the first measurement

occasion and develop subsequently at different rates. In the current research the focus is on the intra-

and interindividual variation of the three repeatedly measured variables (Language ability, Self-

confidence and School investment), in particular with regard to the covariation across individuals

with respect to the patterns of development on these variables (cf. MacCallum, Kim, Malarkey, &

Kiecolt-Glaser, 1997). A short introduction to LGC analysis is presented below. More detailed

introductions to latent growth curve modeling are presented, for instance, by Willett and Sayer

(1994), MacCallum et al. (1997), Muthén and Khoo (1998) and Duncan, Duncan, Strycker, Li and

Alpert (1999).

As noted by Muthén and Khoo (1998) presenting the level and the growth rate as latent variables

enables conventional structural equation modeling (SEM) software to analyze the growth curve models,

and path diagrams can then be drawn to give a graphic presentation. Fig. 1 presents such a path diagram

of a growth curve model for language acquisition. While the individual growth curves are not shown

explicitly, the diagram shows the means and variances of the parameters describing the growth curves,

and their correlation; lan2 to lan8 represent the consecutive measurements of the outcome variable

language acquisition. The ellipses represent the latent variables, respectively Level and Growth rate, and

contain the means (regression on the diamond) and variances of respectively, the (initial) level and the

growth rate of the curves. These latent variables provide information on the interindividual differences in

the developmental curves, and are allowed to correlate. Of primary interest is the growth rate, which

corresponds to development over the subsequent years.

Fig. 1 actually is a confirmatory factor model, with the difference that the factor loadings are

constrained to specific values. This way of presenting the models enables an interpretation of the latent

factor as chronometric latent factors, instead of the usual psychometric latent factors (McArdle, 1989).
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Fig. 1. Graphic representation of latent growth curve model.
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The latent growth curve model can either be build on observed indicators, or on latent factors. So,

if multiple indicators of a given concept are available the factorial structure of these measurements can

be accounted for in the model. The latent growth curve model is then build on the first-order latent

factors, instead of on the observed indicators. In other words, the common variation in the multiple

indicators is accounted for by the first-order factors, while the second-order factors serve to explain

the mean and covariance structure of the first-order factors. Illustrative examples of a LGC model with

multiple indicators can be found in Garst, Frese and Molenaar (2000), and Hancock, Kuo, and

Lawrence (2001). Thus, instead of analyzing the sum scores or item parcels, as is often the case, the

observed indicators can be put directly into the analysis. In the present study the multiple indicators of

the motivational variables, self-confidence and school investment, were explicitly incorporated in the

model.

Incorporating the factorial structure explicitly into the model also allows for the test of an important

assumption, i.e. the assumption of measurement invariance. This assumption cannot be tested if the

growth curve model is build directly on the indicators. Measurement invariance (the invariance of the

measurement parameters) ensures a comparable definition of the latent construct over time (Hancock,

Kuo & Lawrence, 2001). Measurement invariance can exist to a certain degree. If some assumptions

are violated the longitudinal factor model is said to have partial measurement invariance (Byrne

Shavelson & Muthén, 1989; Pentz & Chou, 1994). Practically spoken, a test of the assumption of

measurement invariance implies equality constraints on the factor loadings and intercepts of the

repeatedly measured, and modeled, variables. One way of implementing the assumption of

measurement invariance on the first-order latent factors in the latent growth curve model is presented

in Fig. 2, which presents a growth curve model for the school investment. For purposes of scaling the

factor loadings for all inv1t are fixed to 1; also the intercept for all inv1t is constrained to zero.

Furthermore, the factor loadings and intercepts of inv2t are constrained to be equal over time. In this

specific model inv1t is said to be the reference indicator since it is used to scale the first-order latent
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Fig. 2. Schematic presentation of full measurement invariance in the latent growth curve model for school investment.

Note: Intercepts of indicators are conceptualized as regression on a constant equal to one (See Hancock et al. 2001).

Only the relevant parameters are presented. Factor loadings for inv1t are fixed to 1.00 prior to estimation; factor loadings

of inv2t are constrained to be equal (a); intercepts of inv1t are fixed to zero; intercepts of inv2t are constrained to be

equal (c). The curved double-headed arrows represent correlations between the latent factors. aFactorloadings fixed to

1.00 prior to estimation.
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factors of school investment. Alternatively also inv2t could have been used as the reference indicator,

this would lead to a statistically equivalent model.

2.1. Short overview of the analysis strategy and the results of Stoel, Peetsma and Roeleveld (2003)

For the models reported in this article Mplus was used (Muthén & Muthén, 1998) to fit the models to

the data. Both means and covariances are analyzed simultaneously. So, unlike usual structural equation

models, the factor means are not assumed to be zero. The chi-square measure of overall goodness of fit

(v2), in combination with the root mean square error of approximation (RMSEA, Browne & Cudeck,

1992), will be used to evaluate the overall goodness of fit of the models. For the comparison of

competing models the chi-square difference test (Dv2), can be used. Our sample has a considerable

amount of missing data, but most of these are missing dby designT. These data can be considered to be

missing completely at random (MCAR; Little & Rubin 1987). The other part of the missing data were

not missing by design, but missing due to other causes. Although it is still common practice to use naive

methods such as listwise, or pairwise deletion to deal with the missing data problem, these methods have

been criticized extensively (Little & Rubin, 1987). In our analysis the Full Information Maximum

Likelihood (FIML) estimation procedure of Muthén, Kaplan and Hollis (1987) was used, as

implemented in the software package Mplus. In constructing our final model, the strategy consisted

of two parts: (1) testing the measurement models, and (2) combining the measurement models in a

structural model (Anderson & Gerbing, 1988). The main rationale behind this strategy is that possible
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model misspecifications can be located more easily, and necessary additional tests can be performed

more adequately.

First, longitudinal measurement models were fit for the concepts of school investment and self-

confidence. These models form the basis for further analyses. The models of school investment and self-

confidence were found to follow a similar pattern. For each model, the factor loadings of the indicators

could be constrained to be equal over time, and the intercepts at all but the first occasion, besides the

necessary constraints for identification purposes. Residuals of the same indicators were correlated across

time up to two occasions, a so-called bpartially bandedQ residual structure (see Vonesh & Chinchilli,

1997). The measurement models both have good overall goodness of fit measures. The chi-square

measure of fit is non-significant (a=.01) and the RMSEA b .05. Self-confidence has a fit of:

v2(9)=17.18, p=.05; RMSEA=.018, and School investment: v2(9)=8.97, p=.44; RMSEA=.000. It is
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Fig. 3. Multivariate growth curve model of language ability, self-confidence and school investment. Note. lan=Language

ability, self=Self-confidence, inv=School investment. From "Relations between the development of school investment, self-

confidence and language achievement in elementary education: a multivariate latent growth curve approach." by R.D.

Stoel, T.T.D. Peetsma and J. Roeleveld, 2003, Learning and Individual Differences, 13, p.324. Copyright by Elsevier

Science Inc.



Table 1

Regression coefficients of the growth parameters on intelligence, and correlations between growth parameters in the

multivariate growth curve model controlled for intelligence

1. 2. 3. 4. 5. 6.

Growth parameters on intelligence .54** .28** .09 .23** .47** .02

1. Level (language) 1

2. Growth (language) 0 1

3. Level (self-confidence) .12** � .15** 1

4. Growth (self-confidence) 0 .35** � .42* 1

5. Level (school investment) .18** .06 .00 .14** 1

6. Growth (school investment) 0 .27** 0 0 0 1

**p b .01. From "Relations between the development of school investment, self-confidence and language achievement in

elementary education: a multivariate latent growth curve approach." by R.D. Stoel, T.T.D. Peetsma and J. Roeleveld, 2003,

Learning and Individual Differences, 13, p.324. Copyright by Elsevier Science Inc.

R.D. Stoel et al. / Learning and Individual Differences 16 (2006) 159–174 165
concluded that partial measurement invariance has been found for both models. The intercepts of the

indicators at the first measurement occasions for self-confidence and school investment could not be

constrained to be equal to the intercepts at other occasions. Apparently the children interpreted the

questions at the first measurement occasion in a slightly different manner compared to the other

occasions.

Secondly, latent growth curve models were fit on the first-order factor structure for school

investment and self-confidence, and for language acquisition on the observed scores. The results

indicate a well-fitting linear growth curve model for the concept of self-confidence (v2(15)=27.27,
p=.03, RMSEA=.018), and a nonlinear growth model for both school investment (v2(13)=14.72,
p=.33, RMSEA=.007) and language ability (v2(4)=21.53, p=.00, RMSEA=.040). The results of our

study showed significant differences between children in their developmental curves in all three

processes. The parameter estimates of the three models are presented jointly in Fig. 3. These results

support the expectation of the decrease in school investment over the period of attendance at

elementary school, except for the small increase at the end of the school period. Development in

language ability, school investment and self-confidence were, as can be seen in Table 1, mutually

positively associated. Children having a greater increase in their language ability also had a greater

increase in their self-confidence, as well as a smaller decrease in their school investment. These results

are in accordance with the second hypothesis. Furthermore, it was found that intelligence accounts for

some of the individual differences in the development of language ability, school investment and self-

confidence. The more intelligent the children, the higher is their level at the start, and the more

positive is their development on all three concepts. Regarding the second point, it was found that

intelligence accounts for some, but not all of the association between the developmental processes.

The fact that the processes of school investment and self-confidence are relatively unrelated supports

the argument that school investment, self-confidence and intelligence each may explain a different

portion of the individual differences in the development of language ability. This result offers

confirmation for the third hypothesis.

In this paper we will take a closer look at two aspects of the above described study. In the next section

we will give attention to the measurement models for self-confidence and school investment and we will

examine consequences of different modeling for our results. In section 3 we will discuss the modeling of

intelligence as time-invariant covariate of the growth parameters.
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3. Measurement invariance of multiple indicator concepts

The ability to model multiple indicators under a common factor is one of the advantages of SEM, as is

shown in the extensive literature dealing with issues concerning common factors and structural equation

models in general (e.g. Bollen, 1989). However, incorporating the factorial structure explicitly in to the

model, asks for a choice concerning the scaling of the latent variable structure. As noted before, a

common approach to scale the first-order latent variable structure in a latent growth curve model is to

identify a reference variable, preferably the same at each occasion, and to constrain its factor loading to 1

and its intercept to zero (Hancock, Kuo & Lawrence, 2001; Oort, 2001; Sayer & Cumsille, 2001). Stoel,

Van den Wittenboer and Hox (2004b) demonstrate that under full measurement invariance the choice of

the reference indicator does not affect the parameter estimates and the model fit and the same substantive

conclusions will be drawn.

Partial measurement invariance is not as strict as full measurement invariance in that a few

violations are tolerated. That is, the factor loadings (a), and or the indicatorTs intercepts (c) do not

have to be of the same value, and need not necessarily constrained to be equal for the full time period.

Following the arguments for full measurement invariance, it may be expected that the model is also

insensitive to the scaling of the latent variables. This is not always true, however, if a different

reference indicator is used different parameter estimates could emerge. In other words, the latent

growth curve model under partial measurement invariance is not invariant under a different scaling of

the mean structure of the latent variable by using a reference indicator (see Stoel, Van den Wittenboer

& Hox, 2004b). We will now explore what the consequences are of the choice for the specific

reference indicators for the parameter estimates and model fit of the growth curve models for school

investment and self-confidence.

The analyses of the longitudinal measurement models for school investment and self-confidence

started out with the unconstrained longitudinal factor models. Subsequently, the constraints for

measurement invariance were imposed, and their tenability was assessed. Fig. 4 gives a schematic

presentation of the longitudinal factor models for self-confidence, but a similar figure can be drawn for

school investment. In this figure self1t represents the first indicator of self-confidence, and self2t
represents the second indicator. In the case of school investment these indicators would be, respectively,
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Fig. 4. Schematic presentation of an unconstrained longitudinal factor model for self-confidence. Note. Residuals are correlated

across time up to two occasions.
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inv1t and inv2t. The necessary constraints for identification purposes were implemented on one of the

two items, but the remaining factor loadings (at) and indicator intercepts (ct) were freely estimated.

Table 2 presents the fit statistics of the nested sequences of longitudinal measurement models for both

concepts, in which the first indicator (respectively self1t and inv1t) at each occasion was used to scale

both the covariance and mean structure.

Summarizing the results in Table 2, for both self-confidence and school investment equal factor

loadings of the second indicator across time did not lead to a significant decrease in model fit.

However, a subsequent equality constraint on the intercepts gave a significant deterioration in

model fit. The modification indices showed that, for both models, the misfit was due to the

intercepts at the first measurement occasion. These modification indices for the intercept of the

indicators at the first occasion for self-confidence and school investment were, respectively, 14.96

and 83.41. Though it did not matter for the model fit which constraint was relaxed (self1t or

self2t vs. inv1t or inv2t), it was decided to remove the equality constraint on the second

indicator (self2t vs. inv2t) in order not to change the identification scheme. The partially

constrained longitudinal measurement model provided a good fit to the data, as was already

reported before.

The first question is now what would have happened if the second indicator (self2t vs. inv2t) was

used for identification purposes instead of the first indicator. The results concerning the model fit

were equivalent for all tested models. Therefore, only the fit measures of the final models are

reported (Model 1.5 and 2.5). Table 2 shows that a different reference indicator did not lead to any
Table 2

Fit results for the longitudinal measurement models

Model df v2 ( p) RMSEA

Self-confidence

1.1 No restrictions 4 7.22 (.12) .017 (.000–.037)

1.2 Equal factor loadings 7 16.84 (.02) .023 (.009–.037)

Difference 1.2 and 1.1 7�4=3 9.62 (.02)

1.3 Equal intercepts 10 32.31 (.00) .029 (.018–.040)

Difference 1.3 and 1.2 10�7=3 22.65 (.00)

1.4 Partially equal intercepts 9 17.18 (.05) .018 (.002–.032)

Difference 1.4 and 1.2 9�7=2 .30 (.86)

1.5 Different scaling partially equal intercepts 9 17.18 (.05) .018 (.002–.032)

School investment

2.1 No restrictions 4 5.11 (.28) .010 (.000–.32)

2.2 Equal factor loadings 7 7.99 (.33) .007 (.000–.026)

Difference 2.2 and 2.1 3 2.88 (.41)

2.3 Equal intercepts 10 93.48 (.00) .056 (.046–.067)

Difference 2.3 and 2.2 3 88.37(.00)

2.4 Partially equal intercepts 9 8.97 (.44) .000 (.000–.022)

Difference 2.4 and 2.2 2 .98 (.61)

2.5 Different scaling partially equal intercepts 9 8.97 (.44) .000 (.000–.022)

N =2660; **p b .01; RMSEA values in parentheses denote 90% confidence intervals; Models 1.4 and 2.4 are estimated without

an equality constraint on the intercepts of the indicator at the first occasion.



Table 3

Goodness of fit measures of the univariate growth curve models

Model df v2( p) RMSEA

First indicator as reference

Self-confidence Model 1.2 15 27.27 (.03) .018 (.006–.028)

School investment Model 2.2 13 14.72 (.33) .007 (.000–.021)

Second indicator as reference

Self-confidence 15 21.31 (.12) .013 (.000–.024)

School investment 13 14.38 (.35) .006 (.000–.021)

The 90% confidence interval for RMSEA is given in brackets.
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difference in model fit. Both Model 1.5 and 2.5 have equivalent fit measures as, respectively, Model

1.4 and 2.4. Apparently, there are no consequences for the model fit of the choice for a specific

reference indicator under partially equal indicator intercepts if the structural part of the model is

unconstrained.

Next, the same growth structure is imposed on the structural part of the model as was found by Stoel,

Peetsma and Roeleveld (2003). Recall that a linear growth curve model was found with a zero mean

growth for self-confidence, and a nonlinear growth curve model with a zero correlation between the level

and growth rate for school investment. Table 3 presents the results. The first rows present the fit

measures of the models as analyzed and reported in Table 1 of Stoel, Peetsma and Roeleveld, using the

first indicator (self1t vs. inv1t) as the reference, the last two rows present the growth curve models were

the reference indicator has been changed.

As expected from the results of Stoel, Van den Wittenboer and Hox (2004b), the models with a

different reference indicator are not exactly equal under partial measurement invariance. However, the

differences are, in this case, not so large that they would lead to different substantive conclusions. For

both models the model fit gets slightly better if the second indicator is used as the reference indicator;

and the parameter estimates show minor changes. As a final check, the multivariate growth curve

model was analyzed again using the second indicator of self-confidence and school investment as the

reference for scaling. The fit measures of this model were v2(180)=341.35, p=.00, RMSEA=.017,

approximately the same as the final model of Stoel, Peetsma and Roeleveld (2003). It may be

concluded that in this particular situation the impact of partial measurement invariance was not very

important. Though model fit improved slightly, the parameter estimates and substantive conclusions

remained the same.
4. Modeling time-invariant covariates as predictors of the growth parameters

In this section we will discuss the way the time-invariant covariate ’Intelligence’ was incorporated

in the multivariate growth curve model presented before. This was done using the growth predictor

model (see Stoel, Van den Wittenboer & Hox, 2004a), in which the growth parameters of the three

processes, initial level and growth rate, were regressed on intelligence. The results of Stoel, Van den

Wittenboer and Hox, however, indicate that this might not always be the best approach. That is, if the

assumption of full mediation is violated, the results of the growth predictor model may be biased, and
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substantive conclusions may be incorrect. The assumption of full mediation states that the effect of

the time-invariant covariate on the observed indicators is fully mediated by the latent growth

parameters. In this section, results of additional analyses are presented in which intelligence is

modeled using the direct effect model of Stoel, Van den Wittenboer and Hox. The main question here

is whether the growth predictor model is justified by testing if the assumption of full mediation is

violated for these data, and if so, what the implications are for the reported results and conclusions.

The assumption of full mediation can be tested since the growth predictor model is nested within the

direct effect model. The difference between both ways of modeling time-invariant covariates is

illustrated by Figs. 5 and 6, which present a simplified presentation of a growth curve model from

both perspectives.

Before the analysis can be performed, however, a decision needs to be made about which

measurement level is regressed on the time-invariant covariate. That is, school investment and self-

confidence were measured with multiple indicators, and their growth models were specified as

second-order factor models on the first-order common factors per occasion. Thus, in principle, one

can regress the first order factors on the time-invariant covariate, as well as the observed

indicators.

For language there appeared to be no problem since its growth curve model is not based on a

longitudinal common factor model. The growth parameters account for the structure that is present

in the observed indicators. For self-confidence and school investment, however, the growth
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Fig. 5. Growth predictor model.
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parameters account for the structure of the first order factors. If just the first order factors were

regressed on intelligence, it could happen that the residuals of the observed indicators still contain

variance that could be, but is not accounted for by intelligence. Therefore, it was decided to

regress the observed indicators of all three processes on intelligence. Doing this, the largest effect

of the intelligence is expected; at least larger than if the first order factors were regressed on

intelligence.

The direct effect multivariate growth curve model, with intelligence as the time-invariant covariate

provided the following fit measures: v2(166)=270.31, p=.00, RMSEA=.014. When this model is

contrasted to the growth predictor model (v2(180)=360.49, p=.00, RMSEA=.018), a chi-square

difference of Dv2(14)=90.18 for the test of the assumption of full mediation is obtained. In other

words, the growth predictor model has to be rejected for these data, because of a violation of the

assumption of full mediation. Intelligence appears to be related not only to the growth parameters,

but also to variance of the observed indicators that is not accounted for by the growth parameters.

With the exception of the second measure of self-confidence at the first measurement occasion, all

direct effects were significantly different from zero, ranging in magnitude from .05 to .48 after

standardization.

The additional analysis presented here points out that the model on which the final conclusions

of Stoel, Peetsma and Roeleveld (2003) should have been a direct effect model. To investigate

whether this had consequences for the relevant parameter estimates, the correlations between the



Table 4

Comparison of the correlations, and proportions variance explained, between growth parameters of the direct effect model and

the growth predictor model

1. 2. 3. 4. 5. 6.

Proportion variance explained:

Direct effect model .35 .36 .00 .25 .24 .00

Growth predictor model .29 .08 .00 .06 .23 .00

1. Level (language) 0 .14** 0 .24** 0

2. Growth (language) 0 � .16** .36* .06 .29**

3. Level (self-confidence) .12** � .15** � .44** 0 0

4. Growth (self-confidence) 0 .35** � .42** .16** 0

5. Level (school investment) .18** .06 0 .14** 0

6. Growth (school investment) 0 .27** 0 0 0

**p b .01. The sub-diagonal elements present the correlations of the growth parameters of the direct effect model, and the upper

diagonal elements correspond to the growth predictor model.
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growth parameters of the growth predictor model are now compared to their counterparts of the

direct effect model. Since the direct effect model did not provide estimates of the effect of

intelligence on each of the growth parameters, the proportions of variance explained of the growth

parameters were computed by hand, and compared to the proportions of variance explained in the

growth predictor model. Table 4 presents the relevant information. The first rows present the

proportion of variance explained, the sub-diagonal elements present the correlations of the growth

parameters of the direct effect model, and the upper-diagonal elements correspond to the growth

predictor model.

Table 4 shows that the structure of the correlations between the growth parameters remains the

same. Although the magnitude of the correlations is slightly changed, these changes are not of such

importance that they would have led to different conclusion. What does change, however, are the

proportions variance explained by the growth parameters by intelligence. This change is most

pronounced for the growth rates of language acquisition and self-confidence for which the proportion

variance explained change from, respectively .08 and .06, to .36 and .25. Although it seems that

intelligence now has a larger effect on the development of self-confidence and language acquisition,

the correlations between the growth parameters of self-confidence and school investment are still

significant. So this model also leads to the conclusion that there is an effect of the development in the

motivational variables on the development of language acquisition after the effect of intelligence has

been controlled for.
5. Discussion and conclusion

The secondary analyses presented in this paper provide a nice illustration of the implications of

the conclusions of Stoel, Van den Wittenboer and Hox (2004a,b) for an empirical data set. They

showed that standard modeling practices may sometimes lead to incorrect conclusion regarding the

concepts under investigation, and that ideally alternative modeling possibilities should be considered
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in order to check the adequacy of the standard practice. The aim of this paper was to apply the

results of Stoel, Van den Wittenboer and Hox to the analyses of Stoel, Peetsma and Roeleveld

(2003).

The first issue we focused on was related to the measurement invariance of the repeatedly

measured concept of school investment and motivation. Stoel, Van den Wittenboer and Hox (2004b)

found that changing the reference indicator in a higher-order latent growth curve model, under the

condition of partial measurement invariance, may lead to a change in parameter estimates and model

fit, and thus possibly to a change in the substantive conclusions. This finding may be troublesome

since reference indicators are often chosen arbitrarily. By changing the reference indicators as they

were used by Stoel, Peetsma and Roeleveld (2003), the current analysis showed that in this

particular situation the impact of a change in the reference indicator under partial measurement

invariance was not very important. Though model fit improved slightly, the parameter estimates and

substantive conclusions remained the same.

Regarding the section on modeling the time-invariant covariate we would like to add that if the

assumption of full mediation is violated, the effect of a time-invariant covariate on the latent growth

parameters will be biased. This argues against the standard practice in latent growth curve modeling,

as well as longitudinal multilevel regression analysis, to model the time-invariant covariate with direct

effects on the growth parameters without testing the assumption of full mediation. Again, in this

specific case the results of the direct effect model were not radically different from the results of the

growth predictor model that were reported earlier, except for the pleasing fact that the model fit of the

direct effect model was much better. However, as was shown in Stoel, Van den Wittenboer and Hox

(2004b), the parameter estimates of the growth predictor model may in other cases be drastically

different from their population values, emphasizing the need for an explicit test of the assumption of

full mediation.

In addition, it is interesting to note that if there was a significant effect on a growth parameter in

the growth predictor model, the effect was underestimated. However, this cannot be regarded as a

rule, since the analyses of Stoel, Van den Wittenboer and Hox (2004a) have shown that the effect on

the growth parameters may also be overestimated in certain instances. Whether or not the effect of a

time-invariant covariate is overestimated, or underestimated, depends on the violation of the

assumption of full mediation. Furthermore, if the assumption is violated, it is presumably the relative

strength of the true direct effects (i.e. the relation between the covariate and the time specific

residuals) that determines the bias. In our case this is the relation between intelligence and the

observed indicators of language acquisition, school investment and self-confidence. A simulation

study might shed further light on the specific conditions for over and underestimation of the effect of

a time-invariant covariate.

The question rises if the argument can be extended to the common factor model in general. That is,

shouldn’t the assumption of full mediation always be tested before a covariate is modeled as a

predictor of latent variables? Or even stronger, if any effect between latent variables is modeled,

shouldn’t one firstly regress the indicators of the outcome on the predictor? The answer is yet hard to

give, since things are a bit different here. Contrary to a (linear) latent growth curve model, factor

loadings are in general not constrained to known values. It were exactly these constrained factor

loadings that facilitated the proof that the growth predictor model is nested within the direct effect

model. These issues, concerning the generalization to the common factor model in general will be the

topic of future work.



1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

1. self21 .714

2. self22 .418 .785

3. self41 .150 .126 .584

4. self42 .122 .152 .372 .722

5. self61 .094 .081 .117 .115 .601

6. self62 .094 .116 .099 .161 .420 .777

7. self81 .095 .095 .120 .162 .121 .186 .734

8. self82 .071 .110 .071 .178 .138 .254 .505 .881

9. inv21 .079 .125 .003 .020 .028 .036 .063 .074 .926

10. inv22 .029 .090 .027 .029 .038 .056 .081 .069 .578 .851

11. inv431 .014 .030 .077 .088 .037 .059 .032 .054 .240 .231 .920

12. inv42 .011 .023 .067 .080 .074 .093 .078 .095 .281 .278 .597 1.075

13. inv61 -.044 -.027 -.022 -.006 .086 .116 .035 .052 .237 .274 .322 .367 1.067

14. inv62 -.029 -.016 .027 .030 .118 .129 .086 .078 .261 .300 .364 .467 .664 1.088

15. inv81 -.025 -.035 -.024 .017 .039 .065 .141 .140 .205 .222 .279 .345 .383 .400 1.104

16. inv82 -.035 -.008 .031 .061 .077 .092 .155 .156 .228 .269 .292 .412 .379 .491 .692 1.078

17. lan2 .077 .055 .090 .082 .078 .074 .051 .022 .170 .160 .150 .173 .148 .140 .182 .148 1.22

18. lan4 .042 .010 .055 .041 .068 .090 .109 .096 .161 .195 .178 .219 .211 .210 .197 .174 .563 1.511

19. lan6 .053 .075 .064 .064 .109 .124 .149 .120 .224 .209 .210 .269 .265 .284 .275 .310 .553 .757 1.405

20. lan8 .016 .037 .063 .035 .113 .125 .190 .150 .212 .228 .212 .253 .257 .293 .307 .316 .537 .695 .853 1.320

21. Figure .108 .113 .087 .073 .230 .236 .320 .247 .446 .412 .298 .431 .384 .501 .443 .506 .539 .722 .924 .865 7.518

22. Excl. .125 .058 .118 .133 .174 .206 .296 .265 .425 .489 .327 .474 .568 .568 .486 .557 .747 .862 1.027 .920 2.984 6.910

Means 3.87 3.58 3.81 3.59 3.83 3.61 3.82 3.59 .358 3.62 3.53 3.12 3.44 3.21 3.45 3.25 32.43 34.71 36.02 37.25 14.43 11.67

Care should be taken in replication of the current analyses by means of these means and covariances, since they represent the estimated moments provided by

Mplus as a by-product of the FIML estimation method. FIML estimation requires raw data, which are available upon request from the first author. Ntotal=2693

for Language Ability (lan); Ntotal=2660 for Self-confidence (self) and School investment (inv). The difference in total sample size is due the fact that a

subsample of n=33 subjects have no observations for Self-confidence and School investment.

Appendix A. Estimated covariance matrix and means vector
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