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Multilevel structural equation modeling (multilevel SEM) has become
an established method to analyze multilevel multivariate data. The
first useful estimation method was the pseudobalanced method. This
method is approximate because it assumes that all groups have the
same size, and ignores unbalance when it exists. In addition, full infor-
mation maximum likelihood (ML) estimation is now available, which
is often combined with robust chi-squares and standard errors to
accommodate unmodeled heterogeneity (MLR). In addition, diago-
nally weighted least squares (DWLS) methods have become available
as estimation methods. This article compares the pseudobalanced
estimation method, ML(R), and two DWLS methods by simulating a
multilevel factor model with unbalanced data.The simulations included
different sample sizes at the individual and group levels and differ-
ent intraclass correlation (ICC). The within-group part of the model
posed no problems. In the between part of the model, the different
ICC sizes had no effect. There is a clear interaction effect between
number of groups and estimation method. ML reaches unbiasedness
fastest, then the two DWLS methods, then MLR, and then the pseudo-
balanced method (which needs more than 200 groups). We conclude
that both ML(R) and DWLS are genuine improvements on the pseudo-
balanced approximation.With small sample sizes, the robust methods
are not recommended.

Keywords and Phrases: Two-level structural equation modeling, esti-
mation method, simulation.

Multilevel structural equation modeling (SEM) has become an established method to
analyze multilevel multivariate data. A variety of approaches to multilevel analysis
of structural equation models has been proposed by, among others, Goldstein and
McDonald (1988), Muthén and Satorra (1989), Muthén (1989, 1994), McDonald
(1994), and Raudenbush and Sampson (1999). The first generally useful estimation
method was the pseudobalanced method (Muthén, 1989, 1994). The advantage of
the pseudobalanced method is that it is simple to implement in existing software, so
most major SEM packages have included this method. When SEM software does not
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incorporate multilevel SEM, it can be carried out using a somewhat complicated setup
for a multiple group model (Hox, 2002).

The pseudobalanced method is approximate because it assumes that all groups
have the same size, and thus ignores unbalance when it exists. Full information max-
imum likelihood (ML) estimation does not require that groups are balanced, and
should produce more accurate estimates. The ML equations and a possible soft-
ware implementation are described by Muthén (1990), and more recently by Mehta
and Neale (2005). A recent development is using ML estimation with robust chi-
squares and standard errors (MLR). This produces the same parameter estimates,
but the chi-square for the model test and the standard errors for the parameters are
calculated differently. MLR is assumed to be robust against moderate violations of
assumptions, including unmodeled heterogeneity.

Recently, a limited information diagonally weighted least squares (DWLS) estima-
tion procedure has become available for multilevel SEM (Asparouhov and Muthén,
2007). In this procedure, ML methods are used to estimate the means and the within
groups and between groups covariance matrices separately, after which DWLS is
used to estimate the parameters of the multilevel SEM.

This study uses simulation to examine the accuracy of pseudobalanced estimation,
full ML, and DWLS with unbalanced data and varying sample sizes. In addition,
the differences between asymptotic normal theory and robust standard errors and
chi-squares is studied. The next section describes these estimation methods in more
detail, ending with the questions that stimulated this simulation study.

1 Multilevel structural equation models

In multilevel SEM, we assume sampling at two levels, with both between group
(group level) and within group (individual level) covariation. More than two levels
are possible, which leads to extensions of the methods described next.

1.1 Pseudobalanced estimation

The starting point for the pseudobalanced approach is Cronbach and Webb’s (1975)
decomposition of the total scores at the individual level YT into a between group
component YB, which are the disaggregated group means, and a within group com-
ponent YW , which are the individual deviations from the corresponding group means.
This leads to additive and orthogonal scores for the two levels.

In the population we can also distinguish the between-group covariance matrix �B

and the within-group covariance matrix �W . In the special case of balanced groups,
estimation turns out to be straightforward (Muthén, 1989). In the case of G bal-
anced groups, with all G group sizes (GS) equal to n, and total sample size N =nG,
we can define two sample covariance matrices: the pooled within covariance matrix
SPW and the scaled between covariance matrix S*

B. As Muthén (1989, 1990) shows,
SPW is the ML estimator of �W , and S*

B is the ML estimator of the composite
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�W + c�B, with scaling parameter c equal to the common GS n. In the more general
unbalanced case, SPW is still the ML estimator of �W , but S*

B now estimates a differ-
ent between-groups matrix for each set of groups with common GS n. Thus, ML
estimation for unbalanced groups using this approach implies a separate between-
group model for each distinct GS, with different scaling parameters cd for each.
Muthén (1989) proposed a simplified method, which uses one single S*

B with an
ad hoc estimator c∗, close to the average sample size, for the scaling parameter c.
The result is a limited information ML solution, which McDonald (1994) called a
pseudobalanced solution, but it has also become known as Muthén’s ML (MUML)
solution. We will refer to it as the pseudobalanced solution. Muthén (1989) claims
that this estimator is unbiased and consistent. The simulation studies referred to in
the introduction confirm this, but also show that in the unbalanced case the stan-
dard errors and chi-square model tests are not as accurate as would be desired. Yuan
and Hayashi (2005) show analytically that pseudobalanced standard errors and chi-
square tests only lead to correct inferences when the between-level sample size goes
to infinity and the coefficient of variation of the GS goes to zero. Thus, both simula-
tions and analytical work agree that larger sample sizes do not improve the accuracy
with seriously unbalanced data.

1.2 ML and MLR

The pseudobalanced approach follows the conventional notion that structural equa-
tion models are constructed for the covariance matrix with added mean vector. The
multilevel full ML approach defines the model and the likelihood in terms of the
individual or raw data. Arbuckle (1996) presents this method in the context of SEM
estimation with incomplete data. The SEM likelihood function for raw data is given by

F =
N∑

i =1

log |�i | +
N∑

i =1

log
(
xi −�i

)′
�−1

i

(
xi −�i

)
, (1)

where the subscript i refers to the observed cases, xi to the variables observed for
case i, and �i and �i contain the population means and covariances of the vari-
ables observed for case i. Mehta and Neale (2005) show that for multilevel data,
with individuals nested within groups, the ML fit function given by Equation (1)
applies, with clusters as observations, and individuals within clusters as variables.
Thus, their approach incorporates multilevel analysis in general SEM, allowing for
intercept and slope variation across groups.

A recent development is to use robust standard errors and chi-squares for signifi-
cance testing when violations of the assumptions of the asymptotic tests are sus-
pected. Several corrections have been proposed for the chi-square model test, the
most often used are the Satorra–Bentler (1994) and the Yuan–Bentler (1998)
corrections. The robust standard errors are generally Huber–White sandwich esti-
mators (Huber, 1967; White, 1982), using the observed residual variances to cor-
rect the asymptotic standard errors. The robust chi-square tests and standard errors
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are generally more accurate than the asymptotic tests when data are non-normal
and when the model is mis-specified (Chou, Bentler and Satorra, 1991; Curran,
West and Finch, 1996). With multilevel data, robust chi-squares and standard
errors are assumed to offer some protection against unmodeled heterogeneity, which
may result from mis-specifying the group-level model, or by omitting a level. The
present simulation study includes ML estimation of parameter estimates both with
asymptotic and with robust standard errors and chi-square. The software employed
(Mplus, cf. Muthén and Muthén, 1998–2007) uses the Yuan–Bentler (1998)
robust chi-square and sandwich standard errors. The robust ML approach is
denoted in Mplus and in this article as MLR. It should be stressed that MLR results
in the same parameter estimates as ML; only the standard errors and chi-square tests
are computed differently.

1.3 Two-step DWLS

Asparouhov and Muthén (2007) describe a limited information WLS approach to
multilevel SEM. This approach is a two-step method. In the first step, univariate
ML methods are used to estimate the vector of means � at the between-group level,
and the diagonal elements of �W and �B. Next, the off-diagonal elements of �W

and �B are estimated using bivariate ML methods. Finally, the asymptotic covari-
ance matrix for these estimates is obtained. In the second step, the multilevel model
parameters are estimated for both levels using WLS.

It should be noted that standard WLS uses a weight matrix based on the sam-
pling covariances of all estimated parameters. This is a square matrix, which for the
unrestricted model has dimensionality q×q, with q depending on the number of esti-
mated parameters. So, q equals (p × (p+1))/2, where p is the number of estimated
parameters. As q is an exponential function of the number of parameters p, the
asymptotic covariance matrix tends to be very large. Especially for the between part
of the model, the number of elements in this matrix can easily become larger than
the number of groups (NG). Unless the NG is extremely large, it is preferable to use
only the diagonal of this weight matrix (cf. Muthén, Du Toit, and Spisic, 1997),
which results in DWLS estimation. In Mplus, choosing the diagonal weight matrix
always implies using a robust chi-square, with WLSM using a mean-corrected (first
order) and WLSMV, a mean-and-variance-corrected (second order) correction. In
the simulation described next, the smaller sample sizes are too small to permit full
WLS estimation; hence, we use WLSM and WLSMV only. WLSM and WLSMV
are both DWLS methods that lead to the same estimates and standard errors, but
to different goodness-of-fit (chi-square) tests.

1.4 Accuracy, estimation method, and sample size in multilevel SEM

Several studies have shown that the pseudobalanced approach results in unbiased
and accurate parameter estimates (Muthén, 1990; Hox, 1993; McDonald, 1994).
© 2009 The Authors. Journal compilation © 2009 VVS.
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Hox and Maas (2001) present a simulation that investigates the accuracy of the
model test and standard errors. Their study finds that with unbalanced data a group-
level sample size of 100 is required for sufficient accuracy of the model test and
confidence intervals (CIs) for the parameters. With the group-level sample size set
to 50, the parameter estimates are estimated accurately, but the standard errors are
too small, leading to 95% CIs that are actually lower than 90%. Even with the larger
sample size, the pseudobalanced significance tests are approximate, with an operating
alpha level around 8% instead of the nominal alpha of 5%. Yuan and Hayashi (2005)
show analytically that pseudobalanced standard errors are always biased downwards
when the groups are unbalanced, and that this bias is independent of the between-level
sample size.

Full ML estimation in multilevel SEM should lead to more accurate chi-squares
and standard errors for unbalanced multilevel data than the pseudobalanced method
(cf. Liang and Bentler, 2004). The two-step DWLS approach offers the opportu-
nity to obtain efficient estimates when full ML estimation would need to use numer-
ical integration, which is the case when categorical data are analyzed. Although
we do not investigate categorical data, we include two-step DWLS in our simula-
tion to gauge the general accuracy of this method. In addition, we examine for the
ML method both asymptotic (ML) and robust (MLR) standard errors and chi-
squares. Given that we simulate multivariate normal data, the asymptotic (normal
theory) standard errors should be more accurate than the robust standard errors. We
include the robust methods in our simulation, because these methods are increas-
ingly the methods chosen by default in the available software, so it is of interest
to assess how much accuracy is lost if they are employed with normal data, where
robust estimation is not necessary.

In this simulation study, we examine the accuracy of pseudobalanced estimation,
ML, MLR, WLSM, and WLSMV with different sample sizes at the individual and
group levels. As with balanced data pseudobalanced estimation and ML are equiv-
alent, the simulation includes only unbalanced data. The study also varies the ICC.
With respect to the estimation methods, we expect ML estimates to be more
accurate than pseudobalanced estimates by a considerable margin. As ML is asymp-
totically efficient, we expect ML estimates to be more accurate than the two-step
DWLS estimates, but only with a small margin. We expect the robust standard
errors and chi-squares to be less accurate than the asymptotic standard errors and
chi-squares.

2 Method

2.1 The simulation model

We use a simple confirmatory factor model with six variables, two factors in the
within part, and one factor in the between part. Figures 1 and 2 present the path
diagram for the between and within parts, with the population parameter values.
© 2009 The Authors. Journal compilation © 2009 VVS.
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Fig. 1. Path diagram for the between model.
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Fig. 2. Path diagram for the within model. Unbracketed parameter values correspond to a popula-
tion model with a low intraclass correlation (ICC) and values within brackets to a population
model with a high ICC.

2.2 Simulation procedure

Four conditions are varied in the simulation:

(i) method of estimation/type of standard error or chi-square, five conditions:
pseudobalanced method, ML, MLR, and two-step DWLS (WLSM and
WLSMV for the mean and the mean-and-variance-corrected chi-squares);

(ii) NG, three conditions: NG=50–100–200;
(iii) average GS, three conditions: GS=5–10–25; and
(iv) ICC low versus high, two conditions: ICC=0.05 [low]– 0.15 [high].
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The sample sizes (NG) at the group level are 50, 100, and 200, respectively. These
sample sizes are chosen so that the highest number conforms to Boomsma’s (1983)
recommended lower limit for achieving good ML estimates with normal data,
derived from his robustness studies for single-level data. The lower values have been
chosen because, in multilevel modeling, obtaining data from as many as 200 groups
can be difficult, and many studies have far less than 200 groups.

To maximize the effect of imbalance, the GS where chosen to be quite different.
To create unbalanced data, we employ two distinct GS, with exactly half the groups
being small and the other half being large. For the three average GS, the unbalanced
sample sizes are as follows: for GS = 5: 3/7; for GS = 10: 5/15; for GS = 25: 13/37.
Thus, the large GS is about thrice as large as the small GS.

Several model parameters of the within part had to be modified to set the ICC
at a low or a high level. Figure 2 presents the values for the residual variances, fac-
tor variances, and the covariance that lead to a low ICC of 0.05. The values within
brackets lead to a high ICC of 0.15. At both the within and between levels the
model was identified by fixing the factor variances to the specified values. Thus, the
estimated parameters are the factor loadings, the factor covariance, and the residual
variances.

There are 5×3×3×2=90 conditions. For each condition, we generate 1000 data
sets, assuming normally distributed latent variables. This results in observed data
that meet the assumption of multivariate normality. The 90 simulations where per-
formed using MPlus 5 (Muthén and Muthén, 2007). Software restrictions cause
the confounding of estimation method and use of asymptotic versus robust methods
in the first condition: in the current version of Mplus the pseudobalanced method
produces only asymptotic standard errors, and the DWLS methods produce only
robust standard errors and chi-squares, with WLSM and WLSMV differing only in
the chi-square. Only in full ML estimation both asymptotic and robust methods are
available, and can be compared directly. We will return to software issues briefly in
the discussion. For brevity, in section 3, the available combinations of estimation
method and type of standard errors or chi-squares are labeled ‘estimation method’
in the tables.

2.3 Variables and analysis

The percentage relative bias is used to indicate the accuracy of the parameter esti-
mates. Let �̂ be the estimate of the population parameter �. Then, the relative bias
is given by

(�̂−�)/�. (2)

The accuracy of the chi-square model test is indicated by the empirical alpha level.
In addition, the proportions of parameter estimates falling within their CI are cal-
culated. The relative bias is analyzed using manova procedures with the set of para-
meters (loadings, variances) as multivariate outcomes.
© 2009 The Authors. Journal compilation © 2009 VVS.
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3 Results

No non-convergent or inadmissible solutions (e.g., negative variance estimates) were
encountered across all 90,000 simulated data sets.

3.1 Model fit

Because the fitted models are equal to the population model, the expected value for
the chi-square is equal to the degrees of freedom, which is 17, and the expected pro-
portion of significant chi-squares is equal to the alpha level of 0.05. There is an effect
on the overall chi-square test of estimation method, GS, and NG. Table 1 presents
the empirical alpha level for the different estimation methods and sample sizes. It is
clear that the most important factors are the estimation method and the NG. When
the other factors are constant, increasing the GS does not improve the accuracy
of the model fit test. In this simulation, where the observed data follow a multi-
variate normal distribution, the normal theory ML chi-square and the WLSMV
robust chi-square are the most accurate. With pseudobalanced estimation, the bias
of the chi-square test is large, and it actually increases when the GS becomes larger.
The accuracy of the robust MLR and WLSM chi-squares is better than the pseudo-
balanced chi-square but not as good as the asymptotic ML and the robust WLSMV
chi-square, even with 200 groups.

3.2 Parameter estimates

The factor loadings and the error variances of the within part of the model have an
overall mean bias of −0.001, with negligible differences across the conditions.

Table 1. Empirical alpha level of the chi-square goodness of fit test for differ-
ent number of groups and group sizes, by estimation method

Group size

Estimation method Number of groups 5 10 25 Overall

Pseudobalanced 50 0.104 0.139 0.151 0.131
100 0.086 0.126 0.119 0.110
200 0.086 0.111 0.111 0.103

ML 50 0.071 0.078 0.082 0.077
100 0.058 0.075 0.066 0.066
200 0.070 0.055 0.058 0.061

MLR 50 0.087 0.100 0.105 0.097
100 0.064 0.079 0.070 0.071
200 0.073 0.059 0.067 0.066

WLSM 50 0.062 0.078 0.095 0.078
100 0.092 0.092 0.048 0.077
200 0.085 0.082 0.077 0.081

WLSMV 50 0.030 0.031 0.023 0.028
100 0.041 0.043 0.037 0.040
200 0.053 0.038 0.053 0.048

Notes: ML, maximum likelihood; MLR, robust ML; WLSM, weighted least
squares, mean-corrected; WLSMV, WLS, mean-and-variance-corrected.
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In the between part of the model, the overall mean bias of the factor loadings
is −0.008. This bias is somewhat smaller with larger sample sizes, larger NG, and
with the pseudobalanced estimation procedure. Across all conditions the differences
in bias are negligible. The mean bias of the error variances is somewhat higher; over-
all, it is −0.023. The bias is smaller with a larger NG and with the pseudobalanced
estimation procedure. Across the conditions, the differences in bias are again negli-
gible.

3.3 Standard errors

To investigate the bias of the standard errors of the parameters, the 95% CI for
each parameter is computed, and the proportion of intervals that include the true
population value is counted.

In the within part of the model, the mean coverage of the 95% CI is 94.1% for the
factor loadings and 94.4% for the error variances. The differences across conditions
for both the factor loadings and the error variances are very small.

In the between part of the model the mean coverage of the 95% CIs is smaller. For
the factor loadings the mean coverage is 93.8%, with small effects of the NG and
the GS, and a larger effect of the estimation method. The mean coverage of the
variances is only 91.5%. There is small effect of NG, estimation method, and an
interaction effect between NG and estimation method. The results for the between
part of the model are presented in Table 2.

The coverage of the 95% CI of the loadings is generally better than the cover-
age of the variances. In Table 2, we see the influence of the estimation method and
sample sizes on the operating alpha in detail. The estimation method and the type
of standard error have a substanbtial influence. Concerning the factor loadings,

Table 2. Empirical coverage of 95% CI of the loadings and variances in the between
part of the model, for different number of groups and group sizes, by estimation method

Group size

Estimation method Number of groups 5 10 25

Pseudo-balanced 50 0.926/0.896∗ 0.907/0.880 0.917/0.885
100 0.931/0.916 0.916/0.907 0.920/0.910
200 0.929/0.921 0.921/0.916 0.922/0.918

ML 50 0.938/0.900 0.933/0.900 0.937/0.900
100 0.943/0.925 0.940/0.929 0.943/0.930
200 0.943/0.934 0.946/0.935 0.944/0.938

MLR 50 0.919/0.884 0.911/0.883 0.918/0.883
100 0.934/0.916 0.928/0.919 0.932/0.918
200 0.936/0.927 0.943/0.930 0.938/0.933

WLSM and WLSMV 50 0.949/0.900 0.949/0.910 0.950/0.923
100 0.948/0.933 0.949/0.917 0.948/0.898
200 0.949/0.921 0.950/0.926 0.948/0.935

Notes: ∗First number is the coverage of the loadings, and the second is the coverage
of the variances. Note that for parameter estimates and corresponding standard errors
weighted least squares, mean-corrected (WLSM) and WLS, mean-and-variance-corrected
(WLSMV) are equivalent.
ML, maximum likelihood; MLR, robust ML.
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when the pseudobalanced estimation method is used, the CIs are much small, and
the operating alpha is close to 10%. Increasing the NG of the GS does not improve
the coverege of the pseudobalanced estimation. For the ML and WLSM(W) all cov-
erages are good. With the MLR estimation method, increasing the numer of groups
leads to better coverages.

Concerning the variances all estimation methods do not perform very well. Only
ML estimation leads to acceptable CIs, but only when the NG is 200.

The standard errors are calculated to be the same in WLSM and WLSMW. These
methods perform almost equal to the ML method across all sample sizes, and are
definitely more accurate than using ML estimation with robust standard errors
(MLR).

4 Discussion

It should be noted first that the difference in ICC has no effect on any of the crite-
ria we examined. This is contrary to the results in Hox and Maas (2001) who found
that lower ICCs lead to convergence problems. However, in their study the effect of
ICC and the amount of systematic variance in the between model was confounded.
We conclude that the apparent effect of ICC in Hox and Maas (2001) is actually
the effect of having less systematic variance with the low ICC condition. The other
results of Hox and Maas (2001) with respect to the pseudobalanced method repli-
cate well in this simulation, and correspond to Yuan and Hayashi’s (2005) conclu-
sions.

One general result is that for the within groups model all simulated conditions
produced parameter estimates and corresponding standard errors that are accurate,
with negligible differences between the estimation methods or the type of standard
errors. A general conclusion drawn from these simulation results is that if the inter-
est is only in the within part of the model, for example, when SEM is used with
data collected by cluster sampling, analysis of the pooled within covariance matrix
only is an accurate and effective approach. Most modern SEM software includes
this option.

Differences between simulated conditions appear only in the between groups part
of the model, and in the global chi-square test for goodness of fit. The most impor-
tant factor that determines the accuracy of the results is the estimation method
and the type of standard error/chi-square. As expected, pseudobalanced estimation
results in chi-squares and standard errors that have a sizeable downward bias. As a
result, the empirical alpha level for the chi-square test is unacceptably high, and the
CIs are very small. Given that most software now offers the much more accurate full
ML method, we do not recommend using the pseudobalanced estimation method.

Given that our simulation produces data that are multivariate normal, it is no
surprise that normal theory asymptotic (ML) standard errors and chi-squares are in
general more accurate than the robust standard errors and chi-squares. The
© 2009 The Authors. Journal compilation © 2009 VVS.
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robust chi-squares [MLR and WLSM(V)] do not perform well when the NG is
small. For the ML estimation method the parameter estimates are identical, and
therefore the performance of the asymptotic and robust standard errors can be com-
pared directly. Here, the robust standard errors perform well only with a large NG.
This casts some doubt on the routine use of robust standard errors and chi-squares,
especially with moderate sample sizes. If the data in fact follow the distributional
assumptions, using robust methods is generally less accurate than asymptotic meth-
ods. If inspection of the data supports the assumptions, using asymptotic rather than
robust standard errors may be preferable. In the present simulation, WLSM and
WLSMV produced standard errors for the loadings that are at least as accurate as
ML, and appear even better with smaller NG. In fact, WLSM and WLSMV use the
same estimation method (two-step DWLS) and the same method to compute robust
standard errors. They differ in the way the goodness-of-fit chi-square is computed,
and here WLSM is less accurate, whereas WLSMV is almost as accurate as normal
theory ML. Further simulations comparing these methods on non-normal data are
needed, but based on this simulation the two-step DWLS estimation employed in
Mplus’ WLSMV method appears promising.

The second factor that determines the accuracy of the statistical tests for the
between model is the between-level sample size. When the interest is mostly in the
factor loadings, a moderate sample size of 50 groups appears sufficient when the
ML or the WLSM or WLSMV method is used. MLR performs well when the NG is
increased to 200. Increasing the GS has almost no effect, and in the case of pseudo-
balanced estimation even has a negative effect on the accuracy of the tests. It should
be noted that the superiority of ML over MLR only holds when the data follow
the assumptions. In our simulation, all data are multivariate normal and there is no
unmodeled heterogeneity. When the data violate such assumptions, MLR has been
found to be more accurate than ML (cf. Maas and Hox, 2004), but it still needs the
larger sample sizes to be accurate.

The results of this simulation point out two strategies to increase the accuracy
of the statistical tests, in addition to the simple strategy of increasing the group-
level sample size, which is not always feasible. First, it is interesting to note that the
parameter estimates themselves are accurate in all simulated conditions. This im-
plies that using resampling methods such as the jackknife or the bootstrap should
work well, provided the resampling scheme follows the original multilevel sampling
scheme. Second, our results indicate that even with 200 groups some tests, such
as tests on variances, are still not very accurate. Other studies focusing on multi-
level regression also found that the Wald test for variances is not very accurate;
for a discussion, see Berkhof and Snijders (2001). Monte Carlo methods could
be investigated for more accurate assessment of sampling variability in multilevel
SEM.

The present simulation employs Mplus 5.2 for both simulation and estimation.
We have included an Appendix with the Mplus setup for one of the simulation runs
in the Appendix. Other simulation conditions can be specified by changing certain
© 2009 The Authors. Journal compilation © 2009 VVS.
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values in the model simulation section of the setup, as described in the simulation
design. Other software (e.g., Lisrel or Eqs, but not Amos) generally also offers both
the pseudobalanced approach (generally labeled MUML) and full ML estimation,
with a choice of normal theory or robust chi-squares and standard errors. How-
ever, at the time of writing Mplus is the only software that includes the two-step
DWLS approach. At present, to our knowledge, Mplus and gllamm are the only
software packages that are capable of including random slopes in multilevel SEM,
using methods described in Mehta and Neale (2005).

Appendix: Simulation setup (Mplus commands)

Table A1. TITLE Simulation run for ML, ICC low, NG=50, GS=10;

MONTECARLO:
NAMES ARE y1-y6;
NOBSERVATIONS = 250;
NREPS = 1000;
SEED = 0; ! Comment seed set to ensure complete replicability;
NCSIZES = 2;
CSIZES = 25 (3) 25 (7); ! Produce unbalanced data;

RESULTS = results01.sav;

MODEL POPULATION:
%within%
fw1 BY y1-y3@1;
fw2 BY y4-y6@1;
y1-y6@.10;

fw1@.43; ! Variances determined by set value of ICC;
fw2@.43;
fw1 WITH fw2@.172;
%between%
fb1 BY y1-y6@1;
y1-y6@.25;
fb1@1

MODEL:
%within%
fw1 BY y1-y3*1;
fw2 BY y4-y6*1;
y1-y6*.10;
fw1@.43;
fw2@.43;
fw1 WITH fw2*.172;
%between%
fb1 BY y1-y6*1;
y1-y6*.25;
fb1@1;

ANALYSIS:
TYPE = TWOLEVEL;
ESTIMATOR = ML; ! Estimator and type of SE/Chisquare set here;

OUTPUT:
TECH9; ! Allows monitoring simulations on screen;
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