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At present, multilevel structural equation models use mostly a technique developed by
Muthen (1989, 1994). This technique, which is by now available in the programs Mplus,
EQS, and in the preprocessor STREAMS works by decomposing the sample data into a
pooled within groups and a scaled between groups covariance matrix, and analyzing these
simultaneously using multi-group modeling. Since the between groups covariance matrix
estimates a composite of the population within and between matrices, the analysis model
tends to become complicated in this approach. Also, to keep the analysis manageable, the
analysis neglects the fact that with unbalanced groups, the between groups covariance matrix
reflects a mixture of populations. Various simulations have shown that with reasonable
sample sizes at both levels, ignoring the unbalance does not produce sizeable bias. A different
approach, suggested by Goldstein is to use a conventional multilevel regression program as a
preprocessor to produce a direct maximum likelihood estimate of the population within and
between covariance matrices. This paper examines the advantages and disadvantages of the
two approaches, using example data.
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A genera analysis approach that includes both factor and path analysis is Structural Equation
Modeling, or SEM. The interest in SEM is often on theoretical constructs, which are represented
by the latent factors. The factor model, which is often called the measurement model, specifies
how the latent factors are measured by the observed variables. The relationships between the
theoretical constructs are represented by regression or path coefficients between the factors. The
structural equation model implies a structure for the covariances between the observed variables,
which explains the aternative name Structural equation Analysis. However, the model can be
extended to include means of observed variables or factors in the model, which makes structural
equation modeling a more accurate name.

Structural equation models for multilevel data have been eaborated, among others, by
Goldstein and McDonald (Goldstein & McDonad, 1988; McDonad & Goldstein, 1989,
McDonald, 1994), Muthén and Satorra (Muthén, 1989; Muthén & Satorra, 1989) and Longford
and Muthén (Longford & Muthén, 1992). | refer to McArdle and Hamagami (1996) for a

comparison between multilevel regression techniques and standard multigroup SEM. The



approach by Muthén is particularly interesting, because he shows that structural equation
modeling (SEM) of multilevel data is possible using available SEM software, such as Lisrel
(Joreskog & Sorbom, 1996), Egs, or Amos (Arbucle & Wothke, 1999). For an introductory
exposition of Muthén's method, see Muthén (1994), Hox (1995), Kaplan and Elliot (1997) and
Li, Duncan, Harmer, Acock, and Stoolmiller (1998). Meanwhile, software has appeared that
includes these multilevel extensions directly in the SEM program (Mplus, see Muthén &
Muthén, 1998; Egs 6.0, as promised in spring 2000) or acts as afront end for conventional SEM
software (Streams, see Gustaffson & Stahl, 1999). Heck and Thomas (2000) present an extended
example of multilevel SEM, which uses Muthén's method and discusses the implementation
details for the programs Lisrel, Streams, and Mplus.

This paper discusses two different approaches to multilevel SEM: the approach originally
proposed by Muthén, and an approach that is based on direct estimation of the covariance
matrices at the distinct levels, as proposed by Goldstein (1987, 1995) and applied by Rowe and
Hill (1998).

1. DECOMPOSING MULTILEVEL VARIABLES

Multilevel structural models assume that we have a population of individuals that are divided
into groups. The individual data are collected in a p-variate vector Yiq (subscript i for
individuals, g for groups). Cronbach and Webb (1975) propose to decompose the individual
data Yiy into a between groups component Y, =Y, and a within groups component

Yg =Y, —Vg . In other words, for each individua we replace the observed Total score Y1 =

Yig by its components: the group component Yg (the disaggregated group mean) and the
individual component Yy (the individual deviation from the group mean.) These two
components have the attractive property that they are orthogonal and additive (cf. Searle,
Casdlla& McCulloch, 1992):

Y=Y+ Yw (11)
This decomposition can be used to compute a between groups covariance matrix Zg (the
population covariance matrix of the disaggregated group means Yg) and a within groups

covariance matrix Xy (the population covariance matrix of the individua deviations from the
group means Y y). These covariance matrices are also orthogona and additive:

Sr=S+Sw (12



Following the same logic, we can also decompose the sample data. Suppose we have data from
N individuals, divided into G groups (subscript i for individuas, i=1...N; subscript g for groups,
g=1...G). If we decompose the sample data, we have for the sample covariance matrices:

Sr=Ss+Sw (L3)

Multilevel structural equation modeling assumes that the population covariance matrices Zg and
2 can be described by separate models for the between groups and within groups structure. To
estimate the model parameters, the factor loadings, path coefficients, and residua variances, we
need maximum likelihood estimates of the population between groups covariance matrix g and
the population within groups covariance matrix . What we have is the sample between groups
matrix Sg and the sample within groups matrix Sy. Unfortunately, we cannot smply use Sg asan
estimate of X5, and Sy for Zw. The situation is a bit more complicated.

1.2 MUTHEN SPSEUDOBALANCED APPROACH

In the special case of balanced groups, estimation is straightforward (Muthén, 1989). If we have
G baanced groups, with G equa group sizes n and a total sample size N=nG, we define two
sample covariance matrices. the pooled within covariance matrix Spyw and the scaled between
covariance matrix S g.

Muthén (1989) shows that an unbiased estimate of the population within groups covariance

matrix Zw is given by the pooled within groups covariance matrix Spy, caculated in the sample

by:

(1.4)

Equation (1.4) corresponds to the conventiona equation for the covariance matrix of the
individual deviation scores, with N-G in the denominator instead of the usual N-1.

Since the pooled within groups covariance matrix Spy IS an unbiased estimate of the
population within groups covariance matrix Zy, we can estimate the population within group
structure by constructing and testing amodel for Spy.

The scaled between groups covariance matrix for the disaggregated group means Sg.
caculated in the sample, is given by:
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Muthén (1989, 1990) shows that Spy is the maximum likelihood estimator of Zy, with sample
size N-G, and S is the maximum likelihood estimator of the composite Sy + cZg, with sample

size G, and ¢ equal to the common group sizen:

Sew = 2y (1.6)
and

Sg = iw +CiB (17

Equations 1.6 and 1.7 suggest using the multi-group option of conventional SEM software for a
simultaneous analysis at both levels. However, if we model the between groups structure, we
cannot simply construct and test a model for Sg, because Sg estimates a combination of %, and
2. Instead, we have to specify for Sg two models: one for the within groups structure and one
for the between groups structure. The procedure is that we specify two groups, with covariance
matrices Spyw and Sg (based on N-G and G observations). The mode for 2y must be specified for
both Spy and Sg, with equality restrictions between both “groups to guarantee that we are indeed
estimating the same mode! in both covariance matrices, and the model for X is specified for Sg,
with the scale factor ¢ built into the model.

The reasoning given above applies only in the so-called balanced case, that is, if all
groups have the same group size. In the balanced case, the scale factor c is equal to the common
group size n. The unbalanced case, where the group sizes differ, with G groups of unequal sizes,
is more complicated. In this case, Spy is still the maximum likelihood estimator of Zy, but S'g

now estimates a different expression for each set of groups with distinct group size d:
Sga = 2w +C42p (1.8)

where equation 1.8 holds for each distinct set of groups with a common group size equal to ng,
and cg=ng (Muthén, 1990, 1994). Full Information Maximum Likelihood (FIML) estimation for
unbalanced groups implies specifying a separate between-group model for each distinct group



size. These between groups models have different scaling parameters ¢y for each distinct group
size, and require equality constraints across al other parameters and inclusion of a mean
structure (Muthén, 1994, p. 385). Thus, using conventional SEM software for the unbalanced
case requires a complicated modeling scheme that creates a different ‘group’ for each set of
groups with the same group size. Thisresultsin large and complex models, with possibly groups
with asample size less than the number of elementsin the corresponding covariance matrix. This
makes full Maximum Likelihood estimation problematic, and therefore Muthén (1989, 1990)
proposes to ignore the unbalance, and to compute asingle S g. The model for S'g includes an ad

hoc estimator ¢ for the scaling parameter, which is close to the average sample size:

G

* N% - Z n;
= N(G-1) (G _1) (1.9
This solution is not a full maximum likelihood solution. The result is a Limited Information
Maximum Likelihood (LIML) solution, which McDonad (1994) calls a pseudobalanced
solution. Muthén (1989, 1990) shows that S'g is a consistent and unbiased estimator of the
composite Xy, + cZg. This means that with large samples (of both individuas and groups!) Sg
generaly becomes a close estimate of g, and the pseudobalanced solution should produce a
good approximation given adequate sample sizes.

Since Sg is not a maximum likelihood estimator, the analysis produces only approximate
parameter estimates and standard errors. However, when the group sizes are not extremely
different, the pseudobalanced estimates will be close enough to the full maximum likelihood
estimates to be useful in their own right. Comparisons of pseudobalanced estimates with full
maximum likelihood estimates or with known population values have been made by Muthén
(1990, 1994), Hox (1993), and McDonad (1994). Their main conclusion is that the
pseudobalanced parameter estimates are fairly accurate and useful for a variety of multilevel
problems. A large smulation study by Hox and Maas (2000) assesses the robustness of the
pseudobal anced method against unequal groups, small sample sizes at both the individua and
the group level, in the presence of alow or a high intraclass correlation (ICC). In this study, the
within groups part of the model poses no problems. The most important problem in the between
groups part of the model, is the occurrence of inadmissible estimates, when the group level

sample size is small (50) and the intracluster correlation is low. When an admissible solution is



found, the factor loadings are generaly accurate. However, the residua variances are
underestimated, and the standard errors are generally too small. Having more or larger groups or
a higher 1CC does not effectively compensate this. Therefore, while the nomina apha level is
5%, the operating apha level is about 8% in al smulated conditions with unbalanced groups.
The strongest contributing factor is an inadequate sample size at the group level. Imbaance is
also a problem for the overal goodness-of-fit test. For balanced data, the chi-square test for
goodness-of-fit is accurate. For unbalanced data, the model is rejected too often, which resultsin
an operating alpha level of about 8%. The size of the biases is comparable to the effect of
moderate non-normality in ordinary modeling. Hox and Maas conclude that the approximate
solution is useful, provided the group level sample sizeis at least 100, and keeping in mind that
the operating aphalevel is somewhat higher than the nominal alphaleve.

The multilevel part of the structural equation model outlined above is smpler than that of
the multilevel regression model. It is comparable to the multilevel regression model with random
variation of the intercepts. There is no provision for randomly varying sopes (factor loadings
and path coefficients). Although it would be possible to include cross-level interactions,
introducing interaction variables of any kind in structural equation models is neither simple nor
elegant (cf. Bollen, 1989). An interesting approach would be to alow for different within groups
covariance matrices in different subsamples.

The pseudobalanced approach needs the pooled within and the scaled between covariance
matrices. Standard software does not provide these directly. One solution is to use special
software that calculates these matrices directly, such as the freeware program SpLiT2 (HOX,
1994) or the preprocessor STREAMS (Gustaffson & Stahl, 1999). A different solution is to use
standard software such as Spss to calculate the correlations and standard deviations of the
deviation scores and the disaggregated means. The correlations are scale-free numbers, and
therefore the correct ones. The standard deviations will be caculated using N-1 in the
denominator, instead of the denominators N-g for the pooled within covariances and G-1 for the
scaled between groups covariances. In other words, the standard deviations of the pooled within

matrix must be corrected by multiplying them by /N —1/N -G , and the standard deviations of

the scaled between matrix must be corrected by multiplying them by /N -1/G -1. It iseasy to

make these corrections by hand, and then input the correlations with the corrected standard
deviations into a standard SEM program.

Since the pseudobalanced approach needs the within groups model both for the pooled
within groups and the scaled between groups model, and needs to incorporate the scaling factor



for the between groups model, the actual model can become quite complicated. In addition, some
software has difficulties finding good starting values. Several software writers have addressed
these problems. The program STREAMS (Gustaffson & Stahl, 1999) acts as a preprocessor for
standard SEM software. For two-level SEM, it calculates the pooled within and scaled between
matrices, and writes the complicated setup, including starting values based on previous analyses.
The program Mplus (Muthén & Muthén, 1998) hides all the complications of the pseudo-
balanced approach from the user. It also uses by default robust estimators for the standard errors
and adjusts the chi-square test statistic for the heterogeneity that results from mixing groups of
different sizes (cf. Muthén & Satorra, 1995).

1.2.1An Example of a Multilevel Factor Analysis Using the Pseudobalanced Approach

The example data are taken from Van Peet (1992). They are the scores on six intelligence
measures of 187 children from 37 families. The six intelligence measures are: word list, cards,
matrices, figures, animals, and occupations. The data have a multilevel structure, with children
nested within families. If intelligence is strongly influenced by shared genetic and environmental
influences in the families, we may expect rather strong between family effects.

To begin, the individual scores on the six measures are decomposed into disaggregated
group means and individua deviations from the group means. Jable 1.1 shows the means and
variances of the scores, and the Intra Class Correlation (ICC),” with the family and individual
level variances calculated using standard formulas for the variances. Note that, within rounding
errors, the family level variance and the individual level variance sum to the total variance.

The ICC can be estimated by analysis of variance procedures (Hays, 1994), or from the intercept-only model
using amultilevel approach. Here, it is estimated from the pooled within groups and between groups variances.



Tablel.1l Means variancesand ICC for family data
Total Family Individual

Measure Mean Variance  Variance  Variance ICC
Word list 29.8 15.21 7.48 7.73 .38
Cards 32.7 28.47 13.65 14.82 .36
Matrices 317 16.38 5.24 11.14 .16
Figures 27.1 21.23 6.84 14.38 .16
Animals 28.7 22.82 8.46 14.36 22
Occupations  28.3 21.42 911 12.31 .29

The results in Table 5.1 suggest that there are indeed sizeable family effects. To analyze the
factor structure of the six measures on the individua and family level, we compute the pooled
within family covariance matrix Spy and the scaled between family covariance matrix Sg, using
equations (1.4) and (1.5). Theresultsarein Table 1.2 and 1.3.

Table 11.2 Pooled within families covariances and correlations

1 2 3 4 5 6
Word list 959 24 .30 .20 .09 .05
Cards 316 1837 .49 A4 A4 .01
Matrices 349 783 1381 .14 A1 .07
Figures 264 256 212 1738 .26 19
Animals 115 245 174 466 1781 .45
Occupations 060 015 102 310 742 1527
Note: italic entriesin upper diagond are the correlations




Table 11.3 Scaled between families covariances and correations

Wlig Crds Matr Figs Anim Occ
Word list 3862 .56 .58 19 .60 32
Cards 29.24 7053 .66 49 41 17
Matrices 1874 29.02 27.08 .47 55 .10
Figures 693 2435 1467 3537 .31 A3
Animals 2445 2251 19.05 1215 4370 .35
Occupations 1370 997 353 540 1574 47.04
Note: italic entriesin upper diagond are the correlations

The covariances in Table 1.3 appear very large, which is what they should be, because the
covariance matrix in Table 1.3 is the scaled between groups matrix. This matrix equals the
within groups matrix plus the between groups matrix multiplied by the average group size. The
average group size for these family data, indicated by the scaling factor in equation (1.6) is 5.04.
The correlations in Tables 1.2 and 1.3 suggest that the structure is much stronger at the family
level than at theindividual level.

Typicaly, in multilevel SEM, there are many more individuals than groups, and hence the
number of observations for the pooled within groups covariance matrix (N-G) is much larger
than the number of observations for the between groups covariance matrix (G). In this case, the
number of observations on the individual level is 187-37=150, while on the family level it is 37.
Thus, it makes senseto start on the individual level by constructing amodel for Spy.

An exploratory factor analysis on the correlations derived from Spyy suggests two factors,
with the first three measures loading on the first factor, and the last three measures on the last. A
confirmatory factor analysis on Spy confirms this model: x2=7.21, df=8, p=.51. A model with
just one generd factor is rgected: x2=44.87, df=9, p=.00. Figure 1.1 presents the conventional
graphic representation of the individua level (within families) model.

The next step is the specification of afamily modd. For this, we must anayze the matrices
Sew and Sg smultaneously with the multigroup procedure. First, we specify the individual model
for both *groups with equality restrictions applied across both groups for al parameters. Next,
we must specify an additional family model for Sg.
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Figure 1.1 Within families modd for Van Peet data

We start by estimating some ‘benchmark’ models, to test whether there is any between family
structure at all. The simplest model isthe null mode that omits the specification of afamily level
model. If the null model holds, there is no family level structure at al; all covariancesin Sg are
the result of individual sampling variation. If this null-mode holds, we may as well continue our
analyses using simple single level analysis methods. The next model is the independence model,
which specifies only variances on the family level, but no covariances. A graphica
representation of the independence model for Sg isgiven in Figure 1.2.

222282
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Figure 1.2 Within modd + independence modd for between structure, Van Peet data
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Note that in Figure 1.2 | have fixed the loadings for the family level variables (the six ‘factors’ in
the circles going from ‘wl’ to ‘occ’) not to one, asis usual, but to 2.25, which is the square root
of the scale factor. Thisisto transform the family level variablesto their proper scale. Since this
isafixed vaue, it has no influence on the global fit of the model, but it is necessary for a correct
interpretation.

The independence modd estimates for the family level structure only the variances of the
family level variables ‘wl’ to ‘occ’, If the independence modd holds, there is family level
variance, but no substantively interesting structural model. Nevertheless, in this case it is till
useful to apply multilevel analysis, because this produces unbiased estimates of the individual
model parameters. Since there is no interesting between groups modd in this case, we can
smply anayze the pooled within matrix, a& some cost in loosing information from G
observations. If the independence model is rejected, there is some kind of structural model on the
family level. To examine the best possible fit given the individual level model, we can estimate
the saturated model; which fits a full covariﬁnce matrix to the family level observations. This
places no redtrictions on the family model.™ Table 1.4 shows the results of estimating these
models:

Table 1.5 Family level benchmark models
Family mode  Chi-square  df p
Null 125.4 29 .00
Independence  52.5 23 .00
Saturated 7.2 8 51

Both the null model and the independence mode are rgjected. Next, we specify for the family
level the same two models we have used for theindividual level. Again, the two factor moded fits
well. However, on the family level aone factor model fits amost as well, as Table 5.3 shows:

To establish the within groups structure, we can specify the saturated model for the between structure, and then
explore the within model simultaneoudly in both Sy and Sg. However, since Spy is usually based on many more
observationsthan S, little information islost by only analyzing Spyy, while this makes the setups much simpler.
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Table1.6 Family level factor models

Family model  Chi-square  df P
1 Factor 21.3 17 21
2 Factors 20.1 16 22

The principle of using the smplest model that fits well, leads to acceptance of the one factor
model on the family level, which is depicted in Figure 1.3. This model aso shows reasonable to
good ‘goodness-of-fit'" indices. the traditional fit index GFI is 0.88, which is too low, but the
comparative fit index CFl is 0.97, and the root mean square error of approximation RMSEA is
0.04, both of which are acceptable values.

general

‘ wordlist ‘ ‘ cards ‘ ‘matrices‘ ‘ figures ‘ ‘ animals ‘ ‘occupats‘

Figure 1.4 Final 2-level factor modd for Van Peet data

The factor loadings and the residua error variances for the two-level factor model are in Table
1.6 below.
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Table 1.6 Individual and family level estimates, ssandard SEM software
Individual level Family level

Numeric Perception  resd. var. General resid. var.
Word list 1* 8.13(1.03) 1* 1.79 (1.14)
Cards 10.76 (2.44) 1.24(.36) 3.95(1.84)
Matrices 580(2.28) 0.82(.22) -.03 (.66)
Figures .63 (.21) 15.81(1.97) 0.56 (.27) 2.45 (1.45)
Animals 1.51 (.55) 6.70(3.92) 0.98(.31) 1.36 (1.33)
Occupations 1* 10.43(2.08) 0.41(.30)™ 5.69(1.97)
Standard errorsin parentheses. Correlation between individual factors: 0.22; * = fixed; ns= not significant

There isa small anomaly in Table 1.6: one of the error variances at the family level is negative.
The valueis very small, and this kind of problem tends to occur when the sample sizesis small.
Thirty-seven families is indeed a smal sample, and the usual treatment is to fix the small
negative variance estimate at zero. Table 1.6 suggests an interpretation that on the family leve,
where the effects of the shared genetic and environmental influences are visible, one genera (g)
factor is sufficient to explain the covariances between the intelligence measures. On the
individual level, where the effects of individua idiosyncratic influences are visible, we need two
factors. These results could be fitted into Cattel's (1971) theory of fluid and crystallized
intelligence, which states that, as a result of individual factors (education, physical and social
environment), the general g-factor “crystallizes into specific individual competencies. Gustaffson
and Stahl (1999) also analyze this data set, and arrive at a different model.

The results given above were produced using standard SEM software on the pooled within
and the scaled between covariance matrix, produced by the program SPLIT2 (Hox, 1994). Using
Mplus (Muthén & Muthén, 1998), we can analyze the multilevel factor modd directly. If we use
Mplus to produce a Maximum Likelihood solution, the results are almost identical: a chi-square
of 21.7 (df=17, p=0.20) and estimates and standard errors that are very close to the estimates
given in Table 1.6. However, by default Mplus produces for two-level models maximum
likelihood estimates with robust standard errors and a corrected chi-square test. The corrected
chi-square is 24.0 (df=17, p=0.12), which is somewhat different from the standard chi-square.
The Mplus maximum likelihood estimates and robust standard errorsarein Table 1.7.
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Tablel.7 Individual and family level estimates, M plusrobust standard errors
Individual level Family level
Numeric Perception  resd. var. General resid. var.
Word list 1* 8.13(1.02) 1* 1.80(1.42)
Cards 2.34(.60) 10.75(2.76) 1.24(.43) 3.96 (1.55)
Matrices 2.39(.86) 581(251) 0.82(.23) -.04 (.56)
Figures 63 (.17) 15.81(1.51) 0.56 (.28) 246 (1.12)
Animals 1.51 (.55) 6.70(3.91) 0.98(.27) 1.37(.88)
Occupations 1* 10.43(1.74) 0.41(23)"™ 5.71(2.18)
Standard errorsin parentheses. Correlation between individual factors: 0.22; * = fixed; ns= not significant

The results are not greatly different from the standard asymptotic standard errors. Still, using the
Mplus robust estimates, the covariance between the within-families factors, which is barely
sgnificant using the asymptotic standard error (p=0.047), is clearly significant when the
corrected standard error is used (p=0.034).

1.2.2Goodness of Fit Using the Pseudobalanced Approach

Standard SEM programs, and specialized programs like STREAMS and Mplus, produce in
addition to the chi-square test a large number of goodness-of-fit indices that indicate how well
the model fits the data. Statistical tests for model fit have the problem that their power varies
with the sample size. If we have a very large sample, the statistical test will almost certainly
be significant. Thus, with large samples, we will aways rgect our model, even if the model
actually describes the data very well. Conversely, with a very small sample, the model will
always be accepted, even if it fits rather badly.

Given the sensitivity of the chi-square statistic for sample size, researchers have
proposed a variety of alternative fit indices to assess model fit. All goodness-of-fit measures
are some function of the chi-square and the degrees of freedom. Most of these fit indices not
only consider the fit of the model, but also its smplicity. A saturated model, that specifies all
possible paths between all variables, always fits the data perfectly, but it is just as complex as
the observed data. In general, there is atrade-off between the fit of a model and the simplicity
of a model. Several goodness-of-fit indices assess simultaneously both the fit and the
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simplicity of amodel. The goal is to produce a goodness-of-fit index that does not depend on
the sample size or the distribution of the data. In fact, most goodness-of-fit indices till
depend on sample size and distribution, but the dependency is much smaller than that of the
routine chi-square test.

Modern SEM software computes a bewildering array of goodness-of-fit indices. All of
them are functions of the chi-square statistic, but some include a second function that
penalizes complex models. For instance, Akaike's information criterion (AIC), is twice the
chi-square statistic minus the degrees of freedom for the model. For an overview and
evaluation of alarge number of fit indices, including those mentioned here, | refer to Gerbing
and Anderson (1993).

Joreskog and Sorbom (1989) have introduced two goodness-of-fit indices called GFl
(Goodness of Fit) and AGFI (Adjusted GFI). The GFI indicates goodness-of-fit, and the
AGFI attempts to adjust the GFI for the complexity of the model. Bentler (1990) introduces a
similar index called the Comparative Fit Index CFI. Two other well-known measures are the
Tucker-Lewis Index TLI (Tucker & Lewis, 1973), better known as the Non-Normed Fit Index
or NNFI, and the Normed Fit Index NFI (Bentler & Bonett, 1980). Both the NNFI and the
NFI adjust for complexity of the model. Simulation research shows that all these indices till
depend somewhat on sample size and estimation method (e.g., ML or GLS), with the CFl and
the TLI/NNFI showing the best overall performance (Chou & Bentler, 1995; Kaplan, 1995).
If the model fits perfectly, these fit indices should have the value 1. Usually, a value of at
least 0.90 is required to accept a model, while avalue of at least 0.95 is required to judge the
model fit as‘good.” However, these are just rules of thumb.

A relatively modern approach to model fit is to accept that models are only
approximations, and that perfect fit may be too much to ask for. Instead, the problem is to
assess how well a given model approximates the true model. This view led to the
development of an index called RMSEA, for Root Mean Square Error of Approximation
(Browne & Cudeck, 1992). If the approximation is good, the RMSEA should be small.
Typicaly, a RMSEA of less than 0.05 is required, and statistical tests or confidence intervals
can be computed to test if the RMSEA is significantly larger than this lower bound.

Given the many possible goodness-of-fit indices, the usual advice is to assess fit by
inspecting several fit indices that derive from different principles. Therefore, for the
confirmatory factor model for the family data, | reported the chi-square test, and the fit indices
GFl, CFl and RMSEA.

A genera problem with these goodness-of-fit indices is that they are reported for the
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entire model. Therefore, the goodness-of-fit is reflects both the fit in the within model and the
between model. Since the sample size for the within ‘group’ is generally the largest, this part
of the model dominates the value of the fit indices. Clearly, we would prefer to assess the fit
for both parts of the model separately.

Since the within groups sample size is usually much larger than the between groups
sample size, we do not loose much information if we model the within groups matrix
separately, and interpret the fit indices produced in this analysis separately.

A simple way to obtain goodness-of-fit indices for the between model is to specify for
the within groups matrix a saturated model. The saturated model estimates all covariances
between all variables. It has no degrees of freedom, and always fits the data perfectly. As a
result, the degree of fit indicated by the goodness-of-fit indices, represents the fit of the
between model. This is not the best way to assess the fit of the between model, because the
perfect fit of the within model also influences the value of the fit index. Fit indices that are
mostly sensitive to the degree of fit will show a spuriously good fit, while fit indices that also
reflect the parsimony of the model may even show a spurious lack of fit.

A better way to indicate the fit of the within and between model separately is to
calculate these by hand. Most fit indices are a function of the chi-square, sasmple size N, and
degrees of freedom df. Some consider only the model under consideration, the target model
M, others also consider a baseline model, usually the independence model. By estimating the
independence and the target model for the within matrix, with a saturated model for the
between matrix, we can assess how large the contribution to the overall chi-square is for the
various within models. In the same way, by estimating the independence and the target model
for the between matrix, with a saturated model for the within matrix, we can assess how large
the contribution to the overall chi-square is for the various between models. Using this
information, we can calculate the most common goodness-of-fit indices. Most SEM software
produces the needed information, and the references and formulas are in the user manuals and
in the generd literature (e.g. Gerbing & Anderson, 1992).

Table 1.8 gives the separate chi-squares, degrees of freedom, and sample sizes for the

independence model and the final model for the family intelligence example.
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Table 1.8 Chi-sguares and degrees of freedom for_individual and family level
models separ ately
7 Individual leve, Family level,
Between moded saturated within model saturated
independence 2 factors independence 1 factor
chi-square 148.26 7.27 45.23 13.96
Df 15 8 15 13
N 150 150 37 37

The calculation of the widely used goodness-of-fit index GFI istoo complicated to be carried out
by hand. The comparative fit index CFl (Bentler, 1990) is given by

2 _
CFI =1—Xt2—jIt (1.10).
X —dar,

In equation (1.10), x is the chi-square of the target model, x/is the chi-square for the

independence model, and df; and df, are the degrees of freedom for the target and the
independence model. If the difference of the chi-square and the degrees of freedom is
negative, it is replaced by zero.

The Tucker-Lewis index, TLI, which is adso known as the Non-Normed Fit Index,
NNFI, isgiven by

X_X
TLI :1—M (1.12).
X
df,
Finally, the Root Mean Square Error of Approximation RMSEA is given by
(1.12).

Using equations (1.10) to (1.12) and the values in Table 1.8, we can calculate the CFI, TLI
and RM SEA separately for the within and between models. The resultsarein Table 1.9.
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Table 1.9 Fit indicesfor individual and family level models separ ately
Individual level Family level
2 factors 1 factor

G 1.00 0.97

TLI 101 0.96

RMSEA 0.00 0.04

The goodness-of-fit indices in Table 1.9 indicate that the within groups model has an excellent
fit, and the between groups model has a good fit. There is no need to modify our final two-level
factor mode.

1.3 DIRECT ESTIMATION OF THE COVARIANCESAT EACH LEVEL: THE
MULTIVARIATE MULTILEVEL APPROACH

Goldstein (1987, 1995) suggest to use a multivariate multilevel model to produce a covariance
matrix at the different levels, and to input these into a standard SEM program for further
analysis. Therefore, for our family data, we use a multivariate multilevel mode, with separate
levels for the six intelligence tests, the individua children, and the families. We create six
dummy variables to indicate the six intelligence scales, and exclude the intercept from the modd.
Hence, at the lowest level we have

Yoi =710 dy + 15,d,, +..+ T d; (1.13).
At theindividua level we have

T = By +Uy; (1.14).
And at the family level (thethird level in the multivariate model), we have

B, =V, tu, (1.15).
By substitution we obtain

Yhij =yld]jj +y2d2ij +---+%dpij Ty Uy +o g U Uy +o g

(1.16).
8//In sum notation, we have:
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6

Vi = iyhdhij +iuhij +; Uy (1.17).

The model described by equations (1.13) and (1.14), provides us with estimates of the six item
means, and of their variances and covariances at the pupil and school level. Since in this
application we are mostly interested in the variances and covariances, RML estimation is
preferred to FML estimation. Table 1.9 below presents the RML estimates of the covariances
and the corresponding correlations at the individua level, and Table 1.10 presents the same at the
family level.

Table19 Covariancesand correlationsat theindividual level
1 2 3 4 5 6

Word list 965 .24 31 .20 .08 .05
Cards 321 1838 .49 14 A3 01
Matrices 357 789 1392 .14 10 .06
Figures 259 256 213 1793 .26 19
Animals 103 241 161 474 1803 .45
Occupations 05 012 093 319 752 1535
Note: italic entriesin upper diagonal are the correlations

Table1.10 Covariancesand correations at the family level
1 2 3 4 5 6

Word list 592 .68 A7 .20 .90 45
Cards 529 1037 .81 72 .58 .25
Matrices 302 418 257/ 84 101 .59
Figures 089 429 250 342 A4 .07
Animals 491 418 364 143 506 .27

Occupations 277 208 05 035 157 649
Note: italic entriesin upper diagonal are the correlations

Table 1.9 is equivalent to the pooled within families covariance matrix in Table 1.2. The
actual values in both tables are certainly very close. Table 1.10, the between families matrix,
is not equivalent to the scaled between families matrix in Table 1.3. The covariance matrix in
Table 1.3 is the scaled between groups matrix, which is equals to the within groups matrix plus
the between groups matrix multiplied by the average group size. The average group size for these
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family data, indicated by the scaling factor in equation (1.6) is 5.04, and as a result the actud
values in Table 1.3 are rather large. Table 1.10 is a direct estimate of the between family
covariance matrix itself. It is a maximum likelihood estimator of the population between family
covariance matrix, and can be entered directly into a standard SEM program for analysis. As a
result, if we are interested in the population structure of the within families or between families
covariances, we can input the corresponding sample matrix from Table 1.9 or 1.10 directly into a
SEM program. There is no need to analyze them simultaneoudly, using the two-group option,
unless we want to impose constraints across the two levels.

There is one problematic entry in the family level matrix; the correlation between
‘matrices and ‘animals’ is estimated as 1.01, an impossible value. It is interesting to note that
this impossible value is associated with the scale ‘matrices’, which in the pseudobalanced
estimates in Table 1.6 has a small negative variance on the family level. Both impossible
values point to the same variable, and the source of the problem is in both cases the small
sample size at the family level. In the case of the negative variance estimate, the usua
solution is to fix its value to zero. Some SEM programs can continue estimation with an
improper input matrix (e.g., Amos, cf. Arbucle & Wothke, 1999). For our data, the result will
be a negative variance estimate, which subsequently must be fixed at zero. If a SEM program
cannot accommodate an improper covariance matrix, a practical solution is the ridge option,
which is to multiply the diagonal of the covariance matrix with a number slightly larger than
one (the Lisrel program does this automatically, cf. Joreskog & Sorbom, 1996). In our case,
the automatitlridge option in Lisrel multiplies all diagonal values by 2.0 to obtain a proper
input matrix.

If we analyze the individual level and family level covariance matrices separately, we find
the parameter estimates reported all together in Table 1.11. For the individua level, the chi-
square is 7.12 (df=8, p=.52), with al fit indices indicating a good fit. For the family level (after
the ridge-correction) the chi-square is 6.47 (df=9, p=.69), with dl fit indicesindicating agood fit.

! The ridge factor chosen by Lisrel is rather large. Lisrel can be instructed to use a smaller value, such as 1.1,
which would be sufficient. The Amos estimates on the improper matrix are close to the Lisrel estimates, but for
an improper matrix Amos does not calculate the chi-square test. The ridge-solution presented here can be
followed using any of the available SEM software.
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Table1.11 Individual and family level estimates, via dir ect estimation
Individual level Family level

Numeric Perception  resd. var. General resid. var.
Word list 1* 8.15(1.04) 1* 8.26 (2.26)
Cards 2.23(.61) 1091 (2.38) 1.32(.56) 14.51 (3.96)
Matrices 2.34(72) 564(232) 0.93(.34) 2.06 (.92
Figures .66 (.21) 15.78 (1.99) 0.61(.30) 5.49 (1.40)
Animals 1.50 (.53) 6.86(3.86) 1.07(.42) 6.03 (.1883
Occupations 1* 10.39(2.07) 0.34(37)"™ 12.58(2.99)
Standard errors in parentheses. Correlation between individual factors: 0.21™; * = fixed; ns = not significant

The estimates in Table 1.6 are al close to the pseudobalanced estimates presented earlier. The
residua variances at the family level are very large, but thisis the consegquence of the large ridge
multiplication factor.

The fact that the individua level (within families) and family level (between families)
covariances are estimated directly, and consequently can be modeled directly and separately by
any SEM program, is a distinct advantage of the multivariate multilevel approach. As a result,
we get separate model tests and fit indices at al levels. The multivariate multilevel approach to
multilevel SEM aso generalizes straightforwardly to more than two levels. There are other
advantages as well. First, since the multilevel multivariate model does not assume that we have a
complete set of variables for each individual, incomplete data are accommodated without special
effort. Second, if we have dichotomous variables, we can use the multilevel generalized linear
model to produce the covariance matrices, again without special effort.

There are some disadvantages to the multivariate multilevel approach as well. An
important disadvantage is that the covariances produced by the multivariate multilevel approach
are themselves estimated values. They are not directly calculated, as the pooled within groups
and scaled between groups covariances are, but they are estimates produced by a complex
statistical procedure. If the data have amultivariate normal distribution, the pooled within groups
and scaled between groups covariances can be viewed as observed values, which have a known
sampling distribution. This sampling distribution is used by SEM programs to estimate the chi-
sguare model test and the standard errors of the parameter estimates. It is unknown how well the
sampling distribution of the multivariate multilevel covariance estimates follows the sampling
distribution of the observed covariances. This is, of course, especidly true when we analyze
incomplete data or dichotomous variables. In the case of incomplete data it is unclear what the
proper sample size is, and in the case of dichotomous variables we know that the underlying
distribution is not normal, and that the data in general contain less information than normally
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distributed variables do. The covariances estimated using the multivariate multilevel approach
are consistent estimates, meaning that as the sample sizes increase they will approach the
population values more closely. Most likely, the chi-square model test is upwardly biased, and
the standard errors are probably downwardly biased. If the direct approach is used, it seems
prudent to use other goodness-of-fit indices in addition to the chi-square test, and to interpret
borderline significances with some care.

| will illustrate the advantage of the direct approach when data are incomplete using the
Van Peet family data as an example. The data set used so far isjust the subset of the data that has
no missing values on the six intelligence scales. The full data set does in fact contain many
missing vaues. The main reason for thisis that the two last tests ‘naming animals' and ‘naming
occupations are very time consuming, and for that reason these tests were dropped in the course
of the data collection. So, for these two tests, there are 37 families and 187 children, whilefor the
whole (but incomplete) data set there are 49 families and 269 children. Table 1.13. shows the
pairwise sample sizes for the individua level correlations. At the family level, there are data on
49 families except for the correlations that involve the two last tests.

Table1.12 Pairwise sample sizesfor family data, individual level
1 2 3 4 5 6

Word list 265

Cards 265 269

Matrices 265 269 269

Figures 265 269 269 269

Animals 187 191 191 191 191

Occupations 187 191 191 191 191 191

The mean number of individual children is 231 across dl entries in the table, and the mean
number of families is 43. In this case, using the direct estimation approach on the incomplete
data set appears an attractive choice, because we can incorporate far more data in our anayss.
Tables 1.13 and 1.14 present the covariances and correlations based on the whole data set.
Especialy for the family level covariances and correlations, the values for the entire data set
appear somewhat different. Since most values in Table 1.14 are based on about 30% more
families, the covariances presented here are in al probability more accurate.
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Table1.13 Covariances and correlations at the individual level,
entire data set

1 2 3 4 5 6
Word list 907 22 .30 24 .09 .06
Cards 282 1779 .46 22 15 .02
Matrices 336 709 1360 .18 A1 .08
Figures 304 37 271 1713 .27 .20
Animals 112 275 167 470 1806 .46
Occupations 069 038 112 323 759 1530
Note: italic entriesin upper diagonal are the correlations

Table1.14 Covariances and correlations at the family leve,
entire data set

1 2 3 4 5 6
Word list 630 .57 81 27 91 52
Cards 412 820 .62 .69 46 21
Matrices 361 315 314 .66 102 .34
Figures 133 391 233 39% .37 23
Animals 546 315 431 177 574 41
Occupations 364 173 172 128 275 791
Note: italic entriesin upper diagonal are the correlations

Given that there is no single number for the sample size, the mean sample size will be used asan
indicator for the effective sample size. Thus, the sample size for the family level covariance
matrix is 43, and for the individual level covariance matrix 231-43=188. The combined results
arein Table 1.15.
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Table1.15 Individual and family level estimates, via dir ect estimation
Individual level Family level

Numeric Perception  resd. var. General resid. var.
Word list 1* 7.64 (.89) 1* 3.12 (.70)
Cards 2.15 (.56) 11.17(2.05) 0.87(.23) 6.15 (1.35)
Matrices 2.29 (65) 6.08(201) 0.95(.14) 0.01 (.14)
Figures .67 (.18) 14.81 (1.70) 0.64 (.16) 2.80(.61)
Animals 1.42 (.41) 755(3.000 1.19(.18) 0.91 (.29)
Occupations 1* 10.06 (1.80) 0.48(.23) 7.83(1.71)
Standard errors in parentheses. Correlation between individual factors: 0.26™; * = fixed; ns = not significant

For the individual level, the chi-square is 15.00 (df=8, p=.06), with the fit indices indicating
an acceptable fit. For the family level (after the ridge-correction) the chi-square is 75.54
(df=9, p=.00), with al fit indices indicating a poor fit. Earlier we saw that the direct
estimation approach on the complete data produces almost the same results as the
pseudobalanced approach. The large difference in the family level results when the
incompl ete cases are added to the analysis, must be the effect of adding extra cases. Given the
small sample size at the family level, no further exploration of these datais attempted.
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