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At present, multilevel structural equation models use mostly a technique developed by 
Muthen (1989, 1994). This technique, which is by now available in the programs Mplus, 
EQS, and in the preprocessor STREAMS works by decomposing the sample data into a 
pooled within groups and a scaled between groups covariance matrix, and analyzing these 
simultaneously using multi-group modeling. Since the between groups covariance matrix 
estimates a composite of the population within and between matrices, the analysis model 
tends to become complicated in this approach. Also, to keep the analysis manageable, the 
analysis neglects the fact that with unbalanced groups, the between groups covariance matrix 
reflects a mixture of populations. Various simulations have shown that with reasonable 
sample sizes at both levels, ignoring the unbalance does not produce sizeable bias. A different 
approach, suggested by Goldstein is to use a conventional multilevel regression program as a 
preprocessor to produce a direct maximum likelihood estimate of the population within and 
between covariance matrices. This paper examines the advantages and disadvantages of the 
two approaches, using example data. 
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A general analysis approach that includes both factor and path analysis is Structural Equation 

Modeling, or SEM. The interest in SEM is often on theoretical constructs, which are represented 

by the latent factors. The factor model, which is often called the measurement model, specifies 

how the latent factors are measured by the observed variables. The relationships between the 

theoretical constructs are represented by regression or path coefficients between the factors. The 

structural equation model implies a structure for the covariances between the observed variables, 

which explains the alternative name Structural equation Analysis. However, the model can be 

extended to include means of observed variables or factors in the model, which makes structural 

equation modeling a more accurate name. 

 Structural equation models for multilevel data have been elaborated, among others, by 

Goldstein and McDonald (Goldstein & McDonald, 1988; McDonald & Goldstein, 1989, 

McDonald, 1994), Muthén and Satorra (Muthén, 1989; Muthén & Satorra, 1989) and Longford 

and Muthén (Longford & Muthén, 1992). I refer to McArdle and Hamagami (1996) for a 

comparison between multilevel regression techniques and standard multigroup SEM. The 
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approach by Muthén is particularly interesting, because he shows that structural equation 

modeling (SEM) of multilevel data is possible using available SEM software, such as Lisrel 

(Jöreskog & Sörbom, 1996), Eqs, or Amos (Arbucle & Wothke, 1999). For an introductory 

exposition of Muthén's method, see Muthén (1994), Hox (1995), Kaplan and Elliot (1997) and 

Li, Duncan, Harmer, Acock, and Stoolmiller (1998). Meanwhile, software has appeared that 

includes these multilevel extensions directly in the SEM program (Mplus, see Muthén & 

Muthén, 1998; Eqs 6.0, as promised in spring 2000) or acts as a front end for conventional SEM 

software (Streams, see Gustaffson & Stahl, 1999). Heck and Thomas (2000) present an extended 

example of multilevel SEM, which uses Muthén’s method and discusses the implementation 

details for the programs Lisrel, Streams, and Mplus. 

 This paper discusses two different approaches to multilevel SEM: the approach originally 

proposed by Muthén, and an approach that is based on direct estimation of the covariance 

matrices at the distinct levels, as proposed by Goldstein (1987, 1995) and applied by Rowe and 

Hill (1998). 

 
 
1. DECOMPOSING MULTILEVEL VARIABLES 
 
Multilevel structural models assume that we have a population of individuals that are divided 
into groups. The individual data are collected in a p-variate vector Yig (subscript i for 
individuals, g for groups). Cronbach and Webb (1975) propose to decompose the individual 
data Yig into a between groups component B g

=Y Y , and a within groups component 

B gig= −Y Y Y . In other words, for each individual we replace the observed Total score YT = 

Yig by its components: the group component YB (the disaggregated group mean) and the 
individual component YW (the individual deviation from the group mean.) These two 
components have the attractive property that they are orthogonal and additive (cf. Searle, 
Casella & McCulloch, 1992): 
 
 YT = YB + YW           (1.1) 
 
This decomposition can be used to compute a between groups covariance matrix ΣΣΣΣB (the 
population covariance matrix of the disaggregated group means YB) and a within groups 
covariance matrix ΣΣΣΣW (the population covariance matrix of the individual deviations from the 
group means YW). These covariance matrices are also orthogonal and additive: 
 
 ST = SB + SW           (1.2) 



 3 

 
Following the same logic, we can also decompose the sample data. Suppose we have data from 
N individuals, divided into G groups (subscript i for individuals, i=1…N; subscript g for groups, 
g=1…G). If we decompose the sample data, we have for the sample covariance matrices: 
 
 ST = SB + SW           (1.3) 
 
Multilevel structural equation modeling assumes that the population covariance matrices ΣΣΣΣB and 
ΣΣΣΣW can be described by separate models for the between groups and within groups structure. To 
estimate the model parameters, the factor loadings, path coefficients, and residual variances, we 
need maximum likelihood estimates of the population between groups covariance matrix ΣΣΣΣB and 
the population within groups covariance matrix ΣΣΣΣW. What we have is the sample between groups 
matrix SB and the sample within groups matrix SW. Unfortunately, we cannot simply use SB as an 
estimate of ΣΣΣΣB, and SW for ΣΣΣΣW. The situation is a bit more complicated. 
 
 
1.2 MUTHÉN’S PSEUDOBALANCED APPROACH 
 
In the special case of balanced groups, estimation is straightforward (Muthén, 1989). If we have 

G balanced groups, with G equal group sizes n and a total sample size N=nG, we define two 

sample covariance matrices: the pooled within covariance matrix SPW and the scaled between 

covariance matrix S*
B. 

 Muthén (1989) shows that an unbiased estimate of the population within groups covariance 

matrix ΣΣΣΣW is given by the pooled within groups covariance matrix SPW, calculated in the sample 

by: 

  S PW

gi g gi g
i

n

g

G

Y Y Y Y

N G
=

− −
′

−

∑∑ d id i
      (1.4) 

 
Equation (1.4) corresponds to the conventional equation for the covariance matrix of the 
individual deviation scores, with N-G in the denominator instead of the usual N-1. 
 Since the pooled within groups covariance matrix SPW is an unbiased estimate of the 
population within groups covariance matrix ΣΣΣΣW, we can estimate the population within group 
structure by constructing and testing a model for SPW. 
 The scaled between groups covariance matrix for the disaggregated group means SB, 
calculated in the sample, is given by: 
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Muthén (1989, 1990) shows that SPW is the maximum likelihood estimator of ΣΣΣΣW, with sample 

size N-G, and S*
B is the maximum likelihood estimator of the composite ΣΣΣΣW + cΣΣΣΣB, with sample 

size G, and c equal to the common group size n: 

 

 SPW W= !Σ         (1.6) 

and 

 SB W Bc* ! != +Σ Σ        (1.7) 

 

Equations 1.6 and 1.7 suggest using the multi-group option of conventional SEM software for a 

simultaneous analysis at both levels. However, if we model the between groups structure, we 

cannot simply construct and test a model for SB, because SB estimates a combination of ΣΣΣΣW and 

ΣΣΣΣB. Instead, we have to specify for SB two models: one for the within groups structure and one 

for the between groups structure. The procedure is that we specify two groups, with covariance 

matrices SPW and SB (based on N-G and G observations). The model for ΣΣΣΣW must be specified for 

both SPW and SB, with equality restrictions between both `groups' to guarantee that we are indeed 

estimating the same model in both covariance matrices, and the model for ΣΣΣΣB is specified for SB, 

with the scale factor c built into the model. 

 The reasoning given above applies only in the so-called balanced case, that is, if all 

groups have the same group size. In the balanced case, the scale factor c is equal to the common 

group size n. The unbalanced case, where the group sizes differ, with G groups of unequal sizes, 

is more complicated. In this case, SPW is still the maximum likelihood estimator of  ΣΣΣΣW, but S*
B 

now estimates a different expression for each set of groups with distinct group size d: 

 

 SBd W d Bc* ! != +Σ Σ        (1.8) 

 

where equation 1.8 holds for each distinct set of groups with a common group size equal to nd, 

and cd=nd (Muthén, 1990, 1994). Full Information Maximum Likelihood (FIML) estimation for 

unbalanced groups implies specifying a separate between-group model for each distinct group 
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size. These between groups models have different scaling parameters cd for each distinct group 

size, and require equality constraints across all other parameters and inclusion of a mean 

structure (Muthén, 1994, p. 385). Thus, using conventional SEM software for the unbalanced 

case requires a complicated modeling scheme that creates a different ‘group’ for each set of 

groups with the same group size. This results in large and complex models, with possibly groups 

with a sample size less than the number of elements in the corresponding covariance matrix. This 

makes full Maximum Likelihood estimation problematic, and therefore Muthén (1989, 1990) 

proposes to ignore the unbalance, and to compute a single S*
B. The model for S*

B includes an ad 

hoc estimator c* for the scaling parameter, which is close to the average sample size: 
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        (1.9) 

 

This solution is not a full maximum likelihood solution. The result is a Limited Information 

Maximum Likelihood (LIML) solution, which McDonald (1994) calls a pseudobalanced 

solution. Muthén (1989, 1990) shows that S*
B is a consistent and unbiased estimator of the 

composite ΣΣΣΣW + cΣΣΣΣB. This means that with large samples (of both individuals and groups!) SB 

generally becomes a close estimate of ΣΣΣΣB, and the pseudobalanced solution should produce a 

good approximation given adequate sample sizes. 

 Since SB is not a maximum likelihood estimator, the analysis produces only approximate 

parameter estimates and standard errors. However, when the group sizes are not extremely 

different, the pseudobalanced estimates will be close enough to the full maximum likelihood 

estimates to be useful in their own right. Comparisons of pseudobalanced estimates with full 

maximum likelihood estimates or with known population values have been made by Muthén 

(1990, 1994), Hox (1993), and McDonald (1994). Their main conclusion is that the 

pseudobalanced parameter estimates are fairly accurate and useful for a variety of multilevel 

problems. A large simulation study by Hox and Maas (2000) assesses the robustness of the 

pseudobalanced method against unequal groups, small sample sizes at both the individual and 

the group level, in the presence of a low or a high intraclass correlation (ICC). In this study, the 

within groups part of the model poses no problems. The most important problem in the between 

groups part of the model, is the occurrence of inadmissible estimates, when the group level 

sample size is small (50) and the intracluster correlation is low. When an admissible solution is 
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found, the factor loadings are generally accurate. However, the residual variances are 

underestimated, and the standard errors are generally too small. Having more or larger groups or 

a higher ICC does not effectively compensate this. Therefore, while the nominal alpha level is 

5%, the operating alpha level is about 8% in all simulated conditions with unbalanced groups. 

The strongest contributing factor is an inadequate sample size at the group level. Imbalance is 

also a problem for the overall goodness-of-fit test. For balanced data, the chi-square test for 

goodness-of-fit is accurate. For unbalanced data, the model is rejected too often, which results in 

an operating alpha level of about 8%. The size of the biases is comparable to the effect of 

moderate non-normality in ordinary modeling. Hox and Maas conclude that the approximate 

solution is useful, provided the group level sample size is at least 100, and keeping in mind that 

the operating alpha level is somewhat higher than the nominal alpha level. 

 The multilevel part of the structural equation model outlined above is simpler than that of 

the multilevel regression model. It is comparable to the multilevel regression model with random 

variation of the intercepts. There is no provision for randomly varying slopes (factor loadings 

and path coefficients). Although it would be possible to include cross-level interactions, 

introducing interaction variables of any kind in structural equation models is neither simple nor 

elegant (cf. Bollen, 1989). An interesting approach would be to allow for different within groups 

covariance matrices in different subsamples. 

 The pseudobalanced approach needs the pooled within and the scaled between covariance 

matrices. Standard software does not provide these directly. One solution is to use special 

software that calculates these matrices directly, such as the freeware program SPLIT2 (Hox, 

1994) or the preprocessor STREAMS (Gustaffson & Stahl, 1999). A different solution is to use 

standard software such as SPSS to calculate the correlations and standard deviations of the 

deviation scores and the disaggregated means. The correlations are scale-free numbers, and 

therefore the correct ones. The standard deviations will be calculated using N-1 in the 

denominator, instead of the denominators N-g for the pooled within covariances and G-1 for the 

scaled between groups covariances. In other words, the standard deviations of the pooled within 

matrix must be corrected by multiplying them by 1N N G− − , and the standard deviations of 

the scaled between matrix must be corrected by multiplying them by 1 1N G− − . It is easy to 

make these corrections by hand, and then input the correlations with the corrected standard 

deviations into a standard SEM program. 

 Since the pseudobalanced approach needs the within groups model both for the pooled 

within groups and the scaled between groups model, and needs to incorporate the scaling factor 
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for the between groups model, the actual model can become quite complicated. In addition, some 

software has difficulties finding good starting values. Several software writers have addressed 

these problems. The program STREAMS (Gustaffson & Stahl, 1999) acts as a preprocessor for 

standard SEM software. For two-level SEM, it calculates the pooled within and scaled between 

matrices, and writes the complicated setup, including starting values based on previous analyses. 

The program Mplus (Muthén & Muthén, 1998) hides all the complications of the pseudo-

balanced approach from the user. It also uses by default robust estimators for the standard errors 

and adjusts the chi-square test statistic for the heterogeneity that results from mixing groups of 

different sizes (cf. Muthén & Satorra, 1995). 

 
1.2.1 An Example of a Multilevel Factor Analysis Using the Pseudobalanced Approach 
 
The example data are taken from Van Peet (1992). They are the scores on six intelligence 
measures of 187 children from 37 families. The six intelligence measures are: word list, cards, 
matrices, figures, animals, and occupations. The data have a multilevel structure, with children 
nested within families. If intelligence is strongly influenced by shared genetic and environmental 
influences in the families, we may expect rather strong between family effects. 
 To begin, the individual scores on the six measures are decomposed into disaggregated 
group means and individual deviations from the group means. Table 1.1 shows the means and 
variances of the scores, and the Intra Class Correlation (ICC),1 with the family and individual 
level variances calculated using standard formulas for the variances. Note that, within rounding 
errors, the family level variance and the individual level variance sum to the total variance. 

                                                 
    1The ICC can be estimated by analysis of variance procedures (Hays, 1994), or from the intercept-only model 
using a multilevel approach. Here, it is estimated from the pooled within groups and between groups variances. 
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Table 1.1 Means, variances and ICC for family data 

 Total Family Individual  

Measure Mean Variance Variance Variance ICC 

      

Word list 29.8 15.21 7.48 7.73 .38 

Cards 32.7 28.47 13.65 14.82 .36 

Matrices 31.7 16.38 5.24 11.14 .16 

Figures 27.1 21.23 6.84 14.38 .16 

Animals 28.7 22.82 8.46 14.36 .22 

Occupations 28.3 21.42 9.11 12.31 .29 

 
The results in Table 5.1 suggest that there are indeed sizeable family effects. To analyze the 
factor structure of the six measures on the individual and family level, we compute the pooled 
within family covariance matrix SPW and the scaled between family covariance matrix SB, using 
equations (1.4) and (1.5). The results are in Table 1.2 and 1.3. 
 
 
 Table 11.2 Pooled within families covariances and correlations 

 1 2 3 4 5 6 
Word list 9.59 .24 .30 .20 .09 .05 
Cards 3.16 18.37 .49 .14 .14 .01 
Matrices 3.49 7.83 13.81 .14 .11 .07 
Figures 2.64 2.56 2.12 17.38 .26 .19 
Animals 1.15 2.45 1.74 4.66 17.81 .45 
Occupations 0.60 0.15 1.02 3.10 7.42 15.27 
Note: italic entries in upper diagonal are the correlations  
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 Table 11.3 Scaled between families covariances and correlations 

 Wlist Crds Matr Figs Anim Occ 
Word list 38.62 .56 .58 .19 .60 .32 
Cards 29.24 70.53 .66 .49 .41 .17 
Matrices 18.74 29.02 27.08 .47 .55 .10 
Figures 6.93 24.35 14.67 35.37 .31 .13 
Animals 24.45 22.51 19.05 12.15 43.70 .35 
Occupations 13.70 9.97 3.53 5.40 15.74 47.04 
Note: italic entries in upper diagonal are the correlations  

 
 
The covariances in Table 1.3 appear very large, which is what they should be, because the 
covariance matrix in Table 1.3 is the scaled between groups matrix. This matrix equals the 
within groups matrix plus the between groups matrix multiplied by the average group size. The 
average group size for these family data, indicated by the scaling factor in equation (1.6) is 5.04.  
The correlations in Tables 1.2 and 1.3 suggest that the structure is much stronger at the family 
level than at the individual level. 
 Typically, in multilevel SEM, there are many more individuals than groups, and hence the 
number of observations for the pooled within groups covariance matrix (N-G) is much larger 
than the number of observations for the between groups covariance matrix (G). In this case, the 
number of observations on the individual level is 187-37=150, while on the family level it is 37. 
Thus, it makes sense to start on the individual level by constructing a model for SPW. 
 An exploratory factor analysis on the correlations derived from SPW suggests two factors, 
with the first three measures loading on the first factor, and the last three measures on the last. A 
confirmatory factor analysis on SPW confirms this model: χ²=7.21, df=8, p=.51. A model with 
just one general factor is rejected: χ²=44.87, df=9, p=.00. Figure 1.1 presents the conventional 
graphic representation of the individual level (within families) model. 
 The next step is the specification of a family model. For this, we must analyze the matrices 
SPW and SB simultaneously with the multigroup procedure. First, we specify the individual model 
for both ‘groups’ with equality restrictions applied across both groups for all parameters. Next, 
we must specify an additional family model for SB. 
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Figure 1.1 Within families model for Van Peet data 

 
 
We start by estimating some ‘benchmark’ models, to test whether there is any between family 
structure at all. The simplest model is the null model that omits the specification of a family level 
model. If the null model holds, there is no family level structure at all; all covariances in SB are 
the result of individual sampling variation. If this null-model holds, we may as well continue our 
analyses using simple single level analysis methods. The next model is the independence model, 
which specifies only variances on the family level, but no covariances. A graphical 
representation of the independence model for SB is given in Figure 1.2. 

wordlist cards matrices figures animals occupats

numeric perception

wl crds matr figs anim occ

2.25 2.25 2.25 2.25 2.25 2.25

 
Figure 1.2 Within model + independence model for between structure, Van Peet data 
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Note that in Figure 1.2 I have fixed the loadings for the family level variables (the six ‘factors’ in 
the circles going from ‘wl’ to ‘occ’) not to one, as is usual, but to 2.25, which is the square root 
of the scale factor. This is to transform the family level variables to their proper scale. Since this 
is a fixed value, it has no influence on the global fit of the model, but it is necessary for a correct 
interpretation. 
 The independence model estimates for the family level structure only the variances of the 
family level variables ‘wl’ to ‘occ’, If the independence model holds, there is family level 
variance, but no substantively interesting structural model. Nevertheless, in this case it is still 
useful to apply multilevel analysis, because this produces unbiased estimates of the individual 
model parameters. Since there is no interesting between groups model in this case, we can 
simply analyze the pooled within matrix, at some cost in loosing information from G 
observations. If the independence model is rejected, there is some kind of structural model on the 
family level. To examine the best possible fit given the individual level model, we can estimate 
the saturated model; which fits a full covariance matrix to the family level observations. This 
places no restrictions on the family model.1 Table 1.4 shows the results of estimating these 
models: 
 
 

Table 1.5 Family level benchmark models 
 
Family model Chi-square df p 

    

Null 125.4 29 .00 

Independence 52.5 23 .00 

Saturated 7.2 8 .51 

 
 
Both the null model and the independence model are rejected. Next, we specify for the family 
level the same two models we have used for the individual level. Again, the two factor model fits 
well. However, on the family level a one factor model fits almost as well, as Table 5.3 shows: 
 

                                                 
    1To establish the within groups structure, we can specify the saturated model for the between structure, and then 
explore the within model simultaneously in both SPW and SB. However, since SPW is usually based on many more 
observations than SB, little information is lost by only analyzing SPW, while this makes the setups much simpler. 
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Table 1.6  Family level factor models 
 
Family model Chi-square df P 

    

1 Factor 21.3 17 .21 

2 Factors 20.1 16 .22 

 
 
The principle of using the simplest model that fits well, leads to acceptance of the one factor 
model on the family level, which is depicted in Figure 1.3. This model also shows reasonable to 
good ‘goodness-of-fit’ indices: the traditional fit index GFI is 0.88, which is too low, but the 
comparative fit index CFI is 0.97, and the root mean square error of approximation RMSEA is 
0.04, both of which are acceptable values. 
 
 

wordlist cards matrices figures animals occupats

numeric perception

wl crds matr figs anim occ

2.25 2.25 2.25 2.25 2.25 2.25

general

 
Figure 1.4 Final 2-level factor model for Van Peet data 

 
The factor loadings and the residual error variances for the two-level factor model are in Table 
1.6 below. 



 13

 
 
Table 1.6  Individual and family level estimates, standard SEM software 
 Individual level Family level 
 Numeric Perception  resid. var. General  resid. var. 

Word list 1*  8.13 (1.03) 1*    1.79 (1.14) 

Cards 2.34 (.66)  10.76 (2.44) 1.24 (.36) 3.95 (1.84) 

Matrices 2.39 (.74)  5.80 (2.28) 0.82 (.22) -.03 (.66) 

Figures  .63 (.21) 15.81 (1.97) 0.56 (.27) 2.45 (1.45) 

Animals  1.51 (.55) 6.70 (3.92) 0.98 (.31) 1.36 (1.33) 

Occupations  1* 10.43 (2.08) 0.41 (.30)ns 5.69 (1.97) 

Standard errors in parentheses. Correlation between individual factors: 0.22; * = fixed; ns = not significant 

 
 
There is a small anomaly in Table 1.6: one of the error variances at the family level is negative. 
The value is very small, and this kind of problem tends to occur when the sample sizes is small. 
Thirty-seven families is indeed a small sample, and the usual treatment is to fix the small 
negative variance estimate at zero. Table 1.6 suggests an interpretation that on the family level, 
where the effects of the shared genetic and environmental influences are visible, one general (g) 
factor is sufficient to explain the covariances between the intelligence measures. On the 
individual level, where the effects of individual idiosyncratic influences are visible, we need two 
factors. These results could be fitted into Cattel's (1971) theory of fluid and crystallized 
intelligence, which states that, as a result of individual factors (education, physical and social 
environment), the general g-factor `crystallizes' into specific individual competencies. Gustaffson 
and Stahl (1999) also analyze this data set, and arrive at a different model. 
 The results given above were produced using standard SEM software on the pooled within 
and the scaled between covariance matrix, produced by the program SPLIT2 (Hox, 1994). Using 
Mplus (Muthén & Muthén, 1998), we can analyze the multilevel factor model directly. If we use 
Mplus to produce a Maximum Likelihood solution, the results are almost identical: a chi-square 
of 21.7 (df=17, p=0.20) and estimates and standard errors that are very close to the estimates 
given in Table 1.6.  However, by default Mplus produces for two-level models maximum 
likelihood estimates with robust standard errors and a corrected chi-square test. The corrected 
chi-square is 24.0 (df=17, p=0.12), which is somewhat different from the standard chi-square. 
The Mplus maximum likelihood estimates and robust standard errors are in Table 1.7. 
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Table 1.7  Individual and family level estimates, Mplus robust standard errors 
 Individual level Family level 
 Numeric Perception  resid. var. General  resid. var. 

Word list 1*  8.13 (1.02) 1*    1.80 (1.42) 

Cards 2.34 (.60)  10.75 (2.76) 1.24 (.43) 3.96 (1.55) 

Matrices 2.39 (.86)  5.81 (2.51) 0.82 (.23) -.04 (.56) 

Figures  .63 (.17) 15.81 (1.51) 0.56 (.28) 2.46 (1.12) 

Animals  1.51 (.55) 6.70 (3.91) 0.98 (.27) 1.37 (.88) 

Occupations  1* 10.43 (1.74) 0.41 (.23)ns 5.71 (2.18) 

Standard errors in parentheses. Correlation between individual factors: 0.22; * = fixed; ns = not significant 

 
 
The results are not greatly different from the standard asymptotic standard errors. Still, using the 

Mplus robust estimates, the covariance between the within-families factors, which is barely 

significant using the asymptotic standard error (p=0.047), is clearly significant when the 

corrected standard error is used (p=0.034). 

 

1.2.2 Goodness of Fit Using the Pseudobalanced Approach 

 

Standard SEM programs, and specialized programs like STREAMS and Mplus, produce in 

addition to the chi-square test a large number of goodness-of-fit indices that indicate how well 

the model fits the data. Statistical tests for model fit have the problem that their power varies 

with the sample size. If we have a very large sample, the statistical test will almost certainly 

be significant. Thus, with large samples, we will always reject our model, even if the model 

actually describes the data very well. Conversely, with a very small sample, the model will 

always be accepted, even if it fits rather badly. 

Given the sensitivity of the chi-square statistic for sample size, researchers have 

proposed a variety of alternative fit indices to assess model fit. All goodness-of-fit measures 

are some function of the chi-square and the degrees of freedom. Most of these fit indices not 

only consider the fit of the model, but also its simplicity. A saturated model, that specifies all 

possible paths between all variables, always fits the data perfectly, but it is just as complex as 

the observed data. In general, there is a trade-off between the fit of a model and the simplicity 

of a model. Several goodness-of-fit indices assess simultaneously both the fit and the 
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simplicity of a model. The goal is to produce a goodness-of-fit index that does not depend on 

the sample size or the distribution of the data. In fact, most goodness-of-fit indices still 

depend on sample size and distribution, but the dependency is much smaller than that of the 

routine chi-square test. 

Modern SEM software computes a bewildering array of goodness-of-fit indices. All of 

them are functions of the chi-square statistic, but some include a second function that 

penalizes complex models. For instance, Akaike’s information criterion (AIC), is twice the 

chi-square statistic minus the degrees of freedom for the model. For an overview and 

evaluation of a large number of fit indices, including those mentioned here, I refer to Gerbing 

and Anderson (1993). 

Jöreskog and Sörbom (1989) have introduced two goodness-of-fit indices called GFI 

(Goodness of Fit) and AGFI (Adjusted GFI). The GFI indicates goodness-of-fit, and the 

AGFI attempts to adjust the GFI for the complexity of the model. Bentler (1990) introduces a 

similar index called the Comparative Fit Index CFI. Two other well-known measures are the 

Tucker-Lewis Index TLI (Tucker & Lewis, 1973), better known as the Non-Normed Fit Index 

or NNFI, and the Normed Fit Index NFI (Bentler & Bonett, 1980). Both the NNFI and the 

NFI adjust for complexity of the model. Simulation research shows that all these indices still 

depend somewhat on sample size and estimation method (e.g., ML or GLS), with the CFI and 

the TLI/NNFI showing the best overall performance (Chou & Bentler, 1995; Kaplan, 1995). 

If the model fits perfectly, these fit indices should have the value 1. Usually, a value of at 

least 0.90 is required to accept a model, while a value of at least 0.95 is required to judge the 

model fit as ‘good.’ However, these are just rules of thumb. 

 A relatively modern approach to model fit is to accept that models are only 

approximations, and that perfect fit may be too much to ask for. Instead, the problem is to 

assess how well a given model approximates the true model. This view led to the 

development of an index called RMSEA, for Root Mean Square Error of Approximation 

(Browne & Cudeck, 1992). If the approximation is good, the RMSEA should be small. 

Typically, a RMSEA of less than 0.05 is required, and statistical tests or confidence intervals 

can be computed to test if the RMSEA is significantly larger than this lower bound. 

 Given the many possible goodness-of-fit indices, the usual advice is to assess fit by 

inspecting several fit indices that derive from different principles. Therefore, for the 

confirmatory factor model for the family data, I reported the chi-square test, and the fit indices 

GFI, CFI and RMSEA. 

 A general problem with these goodness-of-fit indices is that they are reported for the 
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entire model. Therefore, the goodness-of-fit is reflects both the fit in the within model and the 

between model. Since the sample size for the within ‘group’ is generally the largest, this part 

of the model dominates the value of the fit indices. Clearly, we would prefer to assess the fit 

for both parts of the model separately. 

 Since the within groups sample size is usually much larger than the between groups 

sample size, we do not loose much information if we model the within groups matrix 

separately, and interpret the fit indices produced in this analysis separately. 

 A simple way to obtain goodness-of-fit indices for the between model is to specify for 

the within groups matrix a saturated model. The saturated model estimates all covariances 

between all variables. It has no degrees of freedom, and always fits the data perfectly. As a 

result, the degree of fit indicated by the goodness-of-fit indices, represents the fit of the 

between model. This is not the best way to assess the fit of the between model, because the 

perfect fit of the within model also influences the value of the fit index. Fit indices that are 

mostly sensitive to the degree of fit will show a spuriously good fit, while fit indices that also 

reflect the parsimony of the model may even show a spurious lack of fit. 

A better way to indicate the fit of the within and between model separately is to 

calculate these by hand. Most fit indices are a function of the chi-square, sample size N, and 

degrees of freedom df. Some consider only the model under consideration, the target model 

Mt, others also consider a baseline model, usually the independence model. By estimating the 

independence and the target model for the within matrix, with a saturated model for the 

between matrix, we can assess how large the contribution to the overall chi-square is for the 

various within models. In the same way, by estimating the independence and the target model 

for the between matrix, with a saturated model for the within matrix, we can assess how large 

the contribution to the overall chi-square is for the various between models. Using this 

information, we can calculate the most common goodness-of-fit indices. Most SEM software 

produces the needed information, and the references and formulas are in the user manuals and 

in the general literature (e.g. Gerbing & Anderson, 1992). 

Table 1.8 gives the separate chi-squares, degrees of freedom, and sample sizes for the 

independence model and the final model for the family intelligence example. 
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Table 1.8  Chi-squares and degrees of freedom for individual and family level 
models separately 
7 Individual level, 

Between model saturated 
Family level, 
within model saturated 

 independence 2 factors independence 1 factor 

chi-square 148.26 7.27 45.23 13.96 

Df 15 8 15 13 

N 150 150 37 37 

   
 
The calculation of the widely used goodness-of-fit index GFI is too complicated to be carried out 
by hand. The comparative fit index CFI (Bentler, 1990) is given by 
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       (1.10). 

 
In equation (1.10), 2

tχ  is the chi-square of the target model, 2
Iχ is the chi-square for the 

independence model, and dft and dfI are the degrees of freedom for the target and the 
independence model. If the difference of the chi-square and the degrees of freedom is 
negative, it is replaced by zero. 
 The Tucker-Lewis index, TLI, which is also known as the Non-Normed Fit Index, 
NNFI, is given by 
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Finally, the Root Mean Square Error of Approximation RMSEA is given by 
 

 

2
t t

t
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=        (1.12). 

 
Using equations (1.10) to (1.12) and the values in Table 1.8, we can calculate the CFI, TLI 
and RMSEA separately for the within and between models. The results are in Table 1.9. 
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Table 1.9  Fit indices for individual and family level models separately 
 Individual level Family level 

 2 factors 1 factor 

CFI 1.00 0.97 

TLI 1.01 0.96 

RMSEA 0.00 0.04 

   
 
The goodness-of-fit indices in Table 1.9 indicate that the within groups model has an excellent 
fit, and the between groups model has a good fit. There is no need to modify our final two-level 
factor model. 
 
 
1.3 DIRECT ESTIMATION OF THE COVARIANCES AT EACH LEVEL: THE 
MULTIVARIATE MULTILEVEL APPROACH  
 
Goldstein (1987, 1995) suggest to use a multivariate multilevel model to produce a covariance 
matrix at the different levels, and to input these into a standard SEM program for further 
analysis. Therefore, for our family data, we use a multivariate multilevel model, with separate 
levels for the six intelligence tests, the individual children, and the families. We create six 
dummy variables to indicate the six intelligence scales, and exclude the intercept from the model. 
Hence, at the lowest level we have 
 
 1 1 2 2 6 6hij ij ij ij ij ij ijY d d dπ π π= + +…+       (1.13). 

 
At the individual level we have 
 
 pij pj pijuπ β= +         (1.14). 

 
And at the family level (the third level in the multivariate model), we have 
 
 pj p pjuβ γ= +         (1.15). 

 
By substitution we obtain 
 
 1 1 2 2 6 1 2 6 1 2 6hij ij ij pij ij ij ij j j jY d d d u u u u u uγ γ γ= + +…+ + + +…+ + + +…+  (1.16). 

 
8//In sum notation, we have: 
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6 6 6

1 1 1
hij h hij hij hj

h h h
Y d u uγ

= = =

= + +∑ ∑ ∑       (1.17). 

 
The model described by equations (1.13) and (1.14), provides us with estimates of the six item 
means, and of their variances and covariances at the pupil and school level. Since in this 
application we are mostly interested in the variances and covariances, RML estimation is 
preferred to FML estimation. Table 1.9 below presents the RML estimates of the covariances 
and the corresponding correlations at the individual level, and Table 1.10 presents the same at the 
family level. 
 
 

Table 1.9 Covariances and correlations at the individual level 
 1 2 3 4 5 6 
 Word list 9.65 .24 .31 .20 .08 .05 
Cards 3.21 18.38 .49 .14 .13 .01 
Matrices 3.57 7.89 13.92 .14 .10 .06 
Figures 2.59 2.56 2.13 17.93 .26 .19 
Animals 1.03 2.41 1.61 4.74 18.03 .45 
Occupations 0.55 0.12 0.93 3.19 7.52 15.35 
Note: italic entries in upper diagonal are the correlations 

 
Table 1.10 Covariances and correlations at the family level 
 1 2 3 4 5 6 
Word list 5.92 .68 .77 .20 .90 .45 
Cards 5.29 10.37 .81 .72 .58 .25 
Matrices 3.02 4.18 2.57 .84 1.01 .59 
Figures 0.89 4.29 2.50 3.42 .34 .07 
Animals 4.91 4.18 3.64 1.43 5.06 .27 
Occupations 2.77 2.08 0.59 0.35 1.57 6.49 
Note: italic entries in upper diagonal are the correlations 

 
 
Table 1.9 is equivalent to the pooled within families covariance matrix in Table 1.2. The 
actual values in both tables are certainly very close. Table 1.10, the between families matrix, 
is not equivalent to the scaled between families matrix in Table 1.3. The covariance matrix in 
Table 1.3 is the scaled between groups matrix, which is equals to the within groups matrix plus 
the between groups matrix multiplied by the average group size. The average group size for these 
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family data, indicated by the scaling factor in equation (1.6) is 5.04, and as a result the actual 
values in Table 1.3 are rather large. Table 1.10 is a direct estimate of the between family 
covariance matrix itself. It is a maximum likelihood estimator of the population between family 
covariance matrix, and can be entered directly into a standard SEM program for analysis. As a 
result, if we are interested in the population structure of the within families or between families 
covariances, we can input the corresponding sample matrix from Table 1.9 or 1.10 directly into a 
SEM program. There is no need to analyze them simultaneously, using the two-group option, 
unless we want to impose constraints across the two levels. 
 There is one problematic entry in the family level matrix; the correlation between 
‘matrices’ and ‘animals’ is estimated as 1.01, an impossible value. It is interesting to note that 
this impossible value is associated with the scale ‘matrices’, which in the pseudobalanced 
estimates in Table 1.6 has a small negative variance on the family level. Both impossible 
values point to the same variable, and the source of the problem is in both cases the small 
sample size at the family level. In the case of the negative variance estimate, the usual 
solution is to fix its value to zero. Some SEM programs can continue estimation with an 
improper input matrix (e.g., Amos, cf. Arbucle & Wothke, 1999). For our data, the result will 
be a negative variance estimate, which subsequently must be fixed at zero. If a SEM program 
cannot accommodate an improper covariance matrix, a practical solution is the ridge option, 
which is to multiply the diagonal of the covariance matrix with a number slightly larger than 
one (the Lisrel program does this automatically, cf. Jöreskog & Sörbom, 1996). In our case, 
the automatic ridge option in Lisrel multiplies all diagonal values by 2.0 to obtain a proper 
input matrix.1 
 If we analyze the individual level and family level covariance matrices separately, we find 
the parameter estimates reported all together in Table 1.11. For the individual level, the chi-
square is 7.12 (df=8, p=.52), with all fit indices indicating a good fit. For the family level (after 
the ridge-correction) the chi-square is 6.47 (df=9, p=.69), with all fit indices indicating a good fit. 
 
 

                                                 
1 The ridge factor chosen by Lisrel is rather large. Lisrel can be instructed to use a smaller value, such as 1.1, 
which would be sufficient. The Amos estimates on the improper matrix are close to the Lisrel estimates, but for 
an improper matrix Amos does not calculate the chi-square test. The ridge-solution presented here can be 
followed using any of the available SEM software. 
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Table 1.11  Individual and family level estimates, via direct estimation 
 Individual level Family level 
 Numeric Perception  resid. var. General  resid. var. 

Word list 1*  8.15 (1.04) 1*    8.26 (2.26) 

Cards 2.23 (.61)  10.91 (2.38) 1.32 (.56) 14.51 (3.96) 

Matrices 2.34 (72)  5.64 (2.32) 0.93 (.34) 2.06 (.92) 

Figures  .66 (.21) 15.78 (1.99) 0.61 (.30) 5.49 (1.40) 

Animals  1.50 (.53) 6.86 (3.86) 1.07 (.42) 6.03 (.1883 

Occupations  1* 10.39 (2.07) 0.34 (.37)ns 12.58 (2.99) 

Standard errors in parentheses. Correlation between individual factors: 0.21ns; * = fixed; ns = not significant 

 
 
The estimates in Table 1.6 are all close to the pseudobalanced estimates presented earlier. The 
residual variances at the family level are very large, but this is the consequence of the large ridge 
multiplication factor. 
 The fact that the individual level (within families) and family level (between families) 
covariances are estimated directly, and consequently can be modeled directly and separately by 
any SEM program, is a distinct advantage of the multivariate multilevel approach. As a result, 
we get separate model tests and fit indices at all levels. The multivariate multilevel approach to 
multilevel SEM also generalizes straightforwardly to more than two levels. There are other 
advantages as well. First, since the multilevel multivariate model does not assume that we have a 
complete set of variables for each individual, incomplete data are accommodated without special 
effort. Second, if we have dichotomous variables, we can use the multilevel generalized linear 
model to produce the covariance matrices, again without special effort. 
 There are some disadvantages to the multivariate multilevel approach as well. An 
important disadvantage is that the covariances produced by the multivariate multilevel approach 
are themselves estimated values. They are not directly calculated, as the pooled within groups 
and scaled between groups covariances are, but they are estimates produced by a complex 
statistical procedure. If the data have a multivariate normal distribution, the pooled within groups 
and scaled between groups covariances can be viewed as observed values, which have a known 
sampling distribution. This sampling distribution is used by SEM programs to estimate the chi-
square model test and the standard errors of the parameter estimates. It is unknown how well the 
sampling distribution of the multivariate multilevel covariance estimates follows the sampling 
distribution of the observed covariances. This is, of course, especially true when we analyze 
incomplete data or dichotomous variables. In the case of incomplete data it is unclear what the 
proper sample size is, and in the case of dichotomous variables we know that the underlying 
distribution is not normal, and that the data in general contain less information than normally 
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distributed variables do. The covariances estimated using the multivariate multilevel approach 
are consistent estimates, meaning that as the sample sizes increase they will approach the 
population values more closely. Most likely, the chi-square model test is upwardly biased, and 
the standard errors are probably downwardly biased. If the direct approach is used, it seems 
prudent to use other goodness-of-fit indices in addition to the chi-square test, and to interpret 
borderline significances with some care. 
 I will illustrate the advantage of the direct approach when data are incomplete using the 
Van Peet family data as an example. The data set used so far is just the subset of the data that has 
no missing values on the six intelligence scales. The full data set does in fact contain many 
missing values. The main reason for this is that the two last tests ‘naming animals’ and ‘naming 
occupations’ are very time consuming, and for that reason these tests were dropped in the course 
of the data collection. So, for these two tests, there are 37 families and 187 children, while for the 
whole (but incomplete) data set there are 49 families and 269 children. Table 1.13. shows the 
pairwise sample sizes for the individual level correlations. At the family level, there are data on 
49 families except for the correlations that involve the two last tests. 
 
 

Table 1.12 Pairwise sample sizes for family data, individual level 
 1 2 3 4 5 6 
 Word list 265      
Cards 265 269     
Matrices 265 269 269    
Figures 265 269 269 269   
Animals 187 191 191 191 191  
Occupations 187 191 191 191 191 191 

 
 
The mean number of individual children is 231 across all entries in the table, and the mean 
number of families is 43. In this case, using the direct estimation approach on the incomplete 
data set appears an attractive choice, because we can incorporate far more data in our analysis. 
Tables 1.13 and 1.14 present the covariances and correlations based on the whole data set. 
Especially for the family level covariances and correlations, the values for the entire data set 
appear somewhat different. Since most values in Table 1.14 are based on about 30% more 
families, the covariances presented here are in all probability more accurate. 
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Table 1.13 Covariances and correlations at the individual level, 
entire data set 
 1 2 3 4 5 6 
 Word list 9.07 .22 .30 .24 .09 .06 
Cards 2.82 17.79 .46 .22 .15 .02 
Matrices 3.36 7.09 13.60 .18 .11 .08 
Figures 3.04 3.76 2.71 17.13 .27 .20 
Animals 1.12 2.75 1.67 4.70 18.06 .46 
Occupations 0.69 0.38 1.12 3.23 7.59 15.30 
Note: italic entries in upper diagonal are the correlations 

 
 

Table 1.14 Covariances and correlations at the family level, 
entire data set 
 1 2 3 4 5 6 
Word list 6.30 .57 .81 .27 .91 .52 
Cards 4.12 8.20 .62 .69 .46 .21 
Matrices 3.61 3.15 3.14 .66 1.02 .34 
Figures 1.33 3.91 2.33 3.96 .37 .23 
Animals 5.46 3.15 4.31 1.77 5.74 .41 
Occupations 3.64 1.73 1.72 1.28 2.75 7.91 
Note: italic entries in upper diagonal are the correlations 

 
 
Given that there is no single number for the sample size, the mean sample size will be used as an 
indicator for the effective sample size. Thus, the sample size for the family level covariance 
matrix is 43, and for the individual level covariance matrix 231-43=188. The combined results 
are in Table 1.15. 
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Table 1.15  Individual and family level estimates, via direct estimation 
 Individual level Family level 
 Numeric Perception  resid. var. General  resid. var. 

Word list 1*  7.64 (.89) 1*    3.12 (.70) 

Cards 2.15 (.56)  11.17 (2.05) 0.87 (.23) 6.15 (1.35) 

Matrices 2.29 (65)  6.08 (2.01) 0.95 (.14) 0.01 (.14) 

Figures  .67 (.18) 14.81 (1.70) 0.64 (.16) 2.80 (.61) 

Animals  1.42 (.41) 7.55 (3.00) 1.19 (.18) 0.91 (.29) 

Occupations  1* 10.06 (1.80) 0.48 (.23) 7.83 (1.71) 

Standard errors in parentheses. Correlation between individual factors: 0.26ns; * = fixed; ns = not significant 

 
 
For the individual level, the chi-square is 15.00 (df=8, p=.06), with the fit indices indicating 
an acceptable fit. For the family level (after the ridge-correction) the chi-square is 75.54 
(df=9, p=.00), with all fit indices indicating a poor fit. Earlier we saw that the direct 
estimation approach on the complete data produces almost the same results as the 
pseudobalanced approach. The large difference in the family level results when the 
incomplete cases are added to the analysis, must be the effect of adding extra cases. Given the 
small sample size at the family level, no further exploration of these data is attempted.  
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