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In social sciences, research questions often refer to hierarchically structured data. For

instance, the achievements of pupils in classes (in schools) are studied, or the work

satisfaction of employees in organizations. The main problem of studying such

hierarchical systems, which have more than one level, is the dependence of the

observations at the lower levels. Multilevel analyzing programs account for this

dependence and in recent years these programs are widely accepted.

In this paper we will discuss the influence of different circumstances on the

robustness of  the parameter estimates  (regressioncoefficients and the variance) in two

level situations. A simulation study is used to determine the influence of  small sample

sizes at both level one and level two, and different variance distributions between the

levels (the so called ‘intraclass correlation’).
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INTRODUCTION

Social science often studies systems with a hierarchical structure. For instance, the

achievements of pupils in classes (in schools) are studied, or the work satisfaction of
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employees in organizations. This hierarchical structure of the data creates problems,

because the observations at the lower levels are not independent. Multilevel analysis

techniques have been developed for the linear regression model, which account for this

dependence (Bryk & Raudenbush, 1992; Goldstein, 1995), and specialized software is

now widely available (Bryk, Raudenbush & Congdon, 1996; Rasbash & Woodhouse,

1995).

In this paper we will discuss the influence of different circumstances on the robustness of

the parameter estimates in two level situations. Three conditions are varied in the

simulation: (1) Number of Groups (3 conditions: 30, 50 and 100), (2) Group Size (3

conditions: 5, 30 and 50) and (3) Intraclass Correlation (3 conditions: low: 0.1, medium:

0.2 and high 0.3).

The multilevel model

We will use a simple two level model, for data obtained from N individuals, nested

within J groups, each containing Nj individuals. At the individual level we specify one

explanatory variable (Xij) and at the group level also one explanatory variable (Zj). The

following model is specified:

ijojijjijjjijij euXuXZZXY ++++++= 111011000 γγγγ (1.1)

The u-terms u0j and u1j are residual error terms at the group level, with variance 2
00σ  and

2
11σ . The covariance between the u-terms is σ01. The eij is the residual error at the

indivudual level, with variance 2
eσ . In the above specified model four fixed parameters

have to be estimated (the γ-coefficients) and four random parameters (the variance

components).

If we delete all explanatory variables of equation (1.1), we get the 'intercept-only-

model, as specified in equation (1.2)

ijojij euY ++= 00γ (1.2)

This equation is used to calculate the intraclass correlation (ICC), that is the estimated

proportion of group level variance compared to the estimated total variance:
22

00
2
00 / eICC σσσ += (1.3)
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Sample sizes

In hierarchically nested data, we have two sample sizes. First the Group Size (GS), that

means the number of Nj indivuduals in group J, and second the Number of Groups (NG),

that is the number of J groups. Both conditions have influence on the estimates of the

above specified parameters. For the estimation of the fixed parameters and their standard

errors a large nuber of groups appears more important than a large number of individuals

per group (Van der Leeden & Busing, 1994; Mok,1995; Snijders & Bosker, 1994). The

estimates of the random parameters and their standard errors at the lowest level are

generally accurate. The group level variance components are generally underestimated.

For accurate estimates many groups (more than 100) are needed (Busing, 1993; Van der

Leeden & Busing, 1994; Afshartous, 1995). Kreft (1996) suggests a rule of thumb wich

she calls the '30/30' rule. To be on the safe side, with respect to the estimates of all the

parameters and their standard errors,  a sample of at least 30 groups with at least 30

individuals per group is necessary.

The intraclass correlation

Another interesting question concerns the influence of the intraclass correlation on the

estimation of the parameters, although the intraclass correlations can't be influenced by

the researcher, which was the case in the above discussed influence of the sample sizes.

Simulation studies by Muthén, Wisnicky and Nelson (1991) and Hox and Maas (2001) in

the context of multilevel structural equation modeling (SEM)  suggest that the intraclass

correlation also affects the accuracy of the estimates.

METHOD
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The Simulation Model

We used the above specified simple two level model (equation 1.1) for the simulation

study. The only exception is that there was no covariance specified at the second level.

Simulation Procedure

We will look at three conditions in this simulation: (1) Number of Groups (3 conditions:

30, 50 and 100), (2) Group Size (3 conditions: 5, 30 and 50) and (3) Intraclass

Correlation (3 conditions: low: 0.1, medium: 0.2 and high 0.3).

The number of groups (30-50-100) is chosen so that the highest number is almost

the maximum achievable number. Only in longitudinal research or large-scale research

more than 100 units at the second level are usual. In practice, 50 groups is a frequently

occuring number. Although, according to Busing (1993) this is possibly too low, Kreft

(1996) argued that 30 groups is the absolute minimum.

In longitudinal research, the lowest level is the number of repeated measures. A

number of 5 often occurs. Also in family research, the number of 5 units at the lower

level is quite normal (parents with 3 children). Therefore, the lowest group size is 5.  In

educational research, a group size of 30 is normal. (See also the 30/30 rule of Kreft

1996). The highest number, a group size of 50, must be sufficient.

In educational research, most ICC's are below 0.20. However, in family research,

or when group chararchteristics such as sociometric status are studied, ICC's above 0.33

do occur.

There are 3x3x3=27 conditions. For each condition, we generate 1000 data sets of

two variables. Both the lower level variable X, as the second level variable Z, are

randomly drawn from a normal distribution. The mulilevel program MLn (Rasbach &

Woodhouse, 1995) is used to specify the model and to generate the simulation data. First

the intercept and the crosslevel interaction between the variabels X and Z are computed.

The regression coefficients are specified as follows: 1.00 for the intercept and the

medium effect of .3 for the other regression coefficients (Cohen, 1988). The random
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variance of the intercept at the lowest level ( 2
eσ ) is .5. The random variance of the

intercept at the second level ( 2
00σ ) follows from the specification of the ICC and 2

eσ ,

given formula (1.3). Busing (1993) shows that both the pattern and the size of the 2
00σ  and

the 2
01σ  (random variances of the variables of the lower level) are the same. So, the same

value for 2
01σ  is used as for 2

00σ . To keep a relative simple model, the covariance between

2
00σ   and 2

01σ  is set to zero.

The foregoing sumulation decisions are summarized in table 1.

Table 1

Simulation decisions

Assumption Formula Fixing

Xij ~ N(0,1) Xij

Zj ~ N(0,1) Zj

2
eσ = 0.5 2

eσ

ICC = (0.1, 0.2, 0.3) ICC = 2
00σ /( 2

00σ  + 2
eσ ) 2

00σ

2
00σ = 2

01σ 2
01σ

NG = (30, 50, 100) NG

GS = (5, 30, 50) GS

Two different estimations methods are used in the multilevel software, the

'Restricted Iterative Generalized Least Squares' (RIGLS) estimation method and the

Iterative Generalized Least Squares (IGLS) estimation method. In this paper the RIGLS

method is used, because this method is always as good as the IGLS method and

sometimes better (Browne, 1998).

RESULTS

Analysis
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The relative bias and the 'Mean squared error' (MSE) are commonly used measures of the

accuracy of the parameter estimates. Let θ̂  be the estimation of the population parameter

θ . Then the percentage relative bias is given by:
θ
θ̂ . The MSE is given by: 2)ˆ( θθ − . In

addition we also present the observed coverage of the 95% confidence interval.

Relative bias of the parameter estimates

The fixed parameter estimates have an overall relative bias of 0.0%, with no differences

across the conditions. There are no significant effects of the specified conditions  (α =

0.01). In table 2 the overall relative bias for the fixed effects (regression coefficients) in

the various conditions are presented. The estimated mean bias in all the conditions is

1.00. The mean estimates of the parameters are thus almost perfect.

Table 2

Relative bias of fixed parameters

Number Group ICC
of Groups Size Low (0.1) Medium (0.2) High (0.3)
30   5   .998 1.007   .992

30 1.001 1.002 1.003
50   .998 1.000 1.003

50   5 1.003 1.000 1.000
30 1.001 1.002 1.001
50 1.000 1.002   .997

100   5 1.000   .999   .998
30 1.001 1.000 1.001
50 1.001   .999 1.000

The estimates of the random parameters at the second level have also an overall

relative bias of 0.0% (no significant effects). Tabel 3 shows the overall relative bias. The

mean estimates show some deviations of 0.01% and one of 0.04%. So, also the mean

estimates of the random effects of the second level are almost perfect.
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Table 3
Relative bias of random parameters at level 2

Number Group ICC
of Groups Size Low (0.1) Medium (0.2) High (0.3)
30   5 1.037 1.009   .992

30 1.010 1.004   .993
50 1.004 1.005   .994

50   5 1.008   .997    .994
30   .997   .991 1.011
50 1.006 1.010 1.000

100   5 1.004   .998 1.006
30 1.010   .997 1.003
50   .997 1.000 1.001

The estimates of the random parameter of the lowest level has an overall relative

bias of  0.0%. There is a significant effect of the Group Size (p = 0.005). In Table 4 the

relative bias of this variance component is presented. In table 5 the overall relative bias

for all the conditions are presented. The differences in the relative mean bias for the

different conditions in table 4 are less than 0.01%. In table 5, the mean estimates show

some deviations of 0.01%.

Concluding, we can say that the relative bias of the parameter estimates is negligible.

Table 4

Relative bias of random parameter at level 1 with respect to the number of persons per
group

Group Size rel. bias
5 .997
30 1.000
50 1.000

Table 5

Relative bias of the random parameter at level 1

Number Group ICC
of Groups Size Low (0.1) Medium (0.2) High (0.3)
30   5   .990   .998   .998

30   .998 1.000   .999
50 1.000 1.002 1.000
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50   5   .998 1.005   .995
30 1.001 1.001 1.001
50   .999 1.000   .999

100   5   .997   .995   .998
30 1.000 1.000 1.000
50 1.001 1.001 1.001

Absolute bias of the parameter estimates

The analyses of the absolute bias of the parameters show different results than the above

presented relative bais.

With respect to the estimates of the fixed parameters, the overall absolute bias is

0.0%, but all the conditions, and interactions between them, have significant effects.

Though, the size of the absolute bias is very little. Only the signficiant effects of the ICC

are of interest, because the effects of Number of Groups and Group Size are simply a

reflection of less sampling variability due to larger sample sizes.

In table 6, the absolute bias for different values of the ICC is presented. The

differences between the ICC-conditions are less than 0.01. The interactions of the ICC

with the Number of Groups and  Group Size have also differences between conditions

less than 0.01.

Table 6
Absolute bias of the ICC

ICC abs. bias
low 0.029
medium 0.035
high 0.041

95% confidence intervals

For each parameter is counted how many times the confidence intervals cover the true

popopulation value of the parameter. Most of the random parameters are affected by the
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Number of Groups and the Size of the Group. Some of the fixed parameters are affected

by the Number of  Groups too. Table 7 represents the influence of the Number of Groups

and table 8 the influence of  the Group Size.

Table 7
Influence of the Number of Groups on the non-covarage  of the 95% confidence interval

Number of Groups
30 50 100

U0 0.089 0.074 0.060
U1 0.088 0.072 0.057
E0 0.058 0.056 0.049
INT 0.064 0.057 0.053
X 0.064 0.057 0.052

Table 8
Influence of the Group Size on the non-covarage  of the 95% confidence interval

     Group Size
5 30 50

U1 0.074 0.075 0.074
E0 0.061 0.051 0.051

Concluding we can state, that only when the Number of Groups is 30, the

covarage of the 95% confidence interval of the variance components of the second level

is really too small (almost 9% outside the interval). All the other effects are of minor

importance.

DISCUSSION

The conditions that were varied in this simulation have very little impact on the accuracy

of the estimates of the fixed parameters. Only the confidence intervals and hence the

significance tests of the random parameters at the second level are not accurate when the

number of groups is as small as 30. Almost 9 percent of the random parameter estimates

of  the second level lay outside the 95% percent confidence interval when the number of
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groups is 30. We conclude therfore that the 30/30 rule of Kreft (1996) only holds with

respect to the fixed parameters and the random parameter of the lowest level and not with

respect to the significance tests of the random parameters of the second level.

A remarkable result of this study is further that all simulations did converge. This

is in contradiction with Busing (1993), who found nonconvergence especially in

conditions with 10 to 50 groups and in conditions with 5 or 10 individuals in the groups.

Also in contradiction with Leeden & Busing (1994) are the surprisingly accurate

estimates. Are these the results of better software? Another explanation could be that

these results are found because we have a model with a relatively high percentage

explained variance at the lower level (about 35 percent). However, when we repeated the

simulations with only about 10 percent explained variance, almost the same results were

found.

A final remark we want to make is about the estimation procedure. The

simulations are done with the RIGLS-estimation procedure. This procedure gives always

better (or the same) results as the IGLS-estimation procedure. So the results can not be

generalized to IGLS-estimations.
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