

Sample Size & Robustness Issues in Multilevel Regression Analysis

Joop Hox & Cora Maas Utrecht University, the Netherlands

> j.hox@fss.uu.nl http://www.fss.uu.nl/ms/jh

Graphical Picture of Simple Two-level Regression Model

- Outcome variable on pupil level
- Explanatory variables at both levels
- · Residual error at individual level
- · Residual error at school level

Hierarchical Data Structure

- Three level data structure
- Groups at different levels may have different sizes
- Response (outcome) variable at lowest level
- Explanatory variables at all levels
- The statistical model assumes *sampling* at all levels

Multilevel Regression Model

- Explanatory variables at all levels
- Higher level variables predict variation of lowest level intercept and slopes
 - At the lowest (individual) level we have
 - $Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + e_{ij}$
 - and at the second level
 - $\bullet \quad \beta_{0j} = \gamma_{00} + \gamma_{01} \; Z_j + u_{0j} \; \text{and} \; \; \beta_{1j} = \gamma_{10} + \gamma_{11} \; Zj \, + \, u_{1j}$
- Hence

$$Y_{ii} = \gamma_{00} + \gamma_{10} X_{ii} + \gamma_{01} Z_{i} + \gamma_{11} Z_{i} X_{ii} + u_{1i} X_{ii} + u_{0i} + e_{ii}$$

Estimation

$$Y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + \gamma_{01} Z_j + \gamma_{11} Z_j X_{ij} + u_{1j} X_{ij} + u_{0j} + e_{ij}$$

- Maximum Likelihood (ML) estimation
 - Gamma coefficients
 - standard errors, p -values
 - Variance components s_e² and s²_{u0}, s_{u01}, s²_{u1}
 - standard errors, p -values
- Question: how accurate is the ML estimation with small samples and/or lack of normality?

Sample size and Accuracy

- Fixed parameters (regression coefficients)
 - Unbiased
- Standard errors generally accurate
- Random parameters (variance components)
 - · Lowest level: fine
 - Higher levels: problems with small samples
- Simulations suggest many groups more important than many individuals
- Simulations largely unpublished; reviewed by Kreft (1996) and Hox (1998), summarized in Hox (2002)

- What are sufficient sample sizes for multilevel regression modeling
 - Sufficient = accurate estimates and standard errors
- What happens when higher-level errors are not normal?
 - At what sample sizes is ML robust?
 - robust = accurate estimates and standard errors
 - Are robust standard errors indeed better?
- · Answers by simulation

Simulation Model

- · Simple simulation model
 - $\bullet \quad Y_{ij} = \gamma_{00} \, + \, \gamma_{10} \, X_{ij} \, + \, \gamma_{01} \, Z_j \, + \, \gamma_{11} \, Z_j \, X_{ij} \, + \, u_{1j} \, X_{ij} \, + \, u_{0j} \, + \, e_{ij}$
- Note: in null model

$$Y_{ij} = \gamma_{00} + u_{0j} + e_{ij}$$

we can estimate variances $\sigma^2_{~u0}$ and $\sigma^2_{~e}$ giving intraclass correlation (ICC)

$$\rho_I = \sigma_{u0}^2 / (\sigma_{u0}^2 + \sigma_e^2)$$

Previous simulations show ICC important

Simulation Design

- Simple simulation model
 - $\bullet \quad Y_{ij} = \gamma_{00} + \gamma_{10} \, X_{ij} + \gamma_{01} \, Z_j + \gamma_{11} \, Z_j \, X_{ij} + u_{1j} \, X_{ij} + u_{0j} + e_{ij}$
- Simulated conditions:
- 1) NG = Number of Groups [30, 50, 100]
- 2) GS = Group Size [5, 30, 50]
- 3) ICC = Intraclass Correlation [.1, .2, .3]
- 27 simulated conditions, 1000 simulated data sets in each condition, residuals normal distribution

Simulation Results

- No convergence problems: 27000 admissible solutions
- Regression coefficients no detectable bias
- Variances almost no bias
 - In condition NG=30, GS=5, ICC=0.3 bias = 0.3%
- Standard errors
 - No effect of ICC
 - For regression coefficients: accurate
 - For variances:

Small effect of Number of Groups and Group Size

Simulation Results: Effect of Number of Groups

Parameter		Nu		
	30	50	100	<i>p</i> -value
U ₀	0.089	0.074	0.060	.0000
U_1	0.088	0.072	0.057	.0000
E_0	0.058	0.056	0.049	.0102

 If NG = 100 only U₀ and U₁ coverage significantly different from 95%

Simulation Results: Effect of Group Size

Influence of the Group Size on the non-coverage of the 95% confidence interval

Parameter	Group Size			
	5	30	50	<i>p</i> -value
 U ₀	0.074	0.075	0.074	.9419
U ₁	0.078	0.066	0.072	.0080
E ₀	0.061	0.051	0.051	.0055

 If GS = 100 only U₀ and U₁ coverage significantly different from 95%

- Point estimates of regression coefficients fine
- Point estimates of variance components fine
- Standard errors for regression coefficients fine
- Standard errors for variance components show bias when Number of Groups < 100
 - If NG = 50, bias 8%
 - If NG = 30, bias 15%

Simulation Design

- Simple simulation model
 - $\bullet \quad Y_{ij} = \gamma_{00} + \gamma_{10} \, X_{ij} + \gamma_{01} \, Z_j + \gamma_{11} \, Z_j \, X_{ij} + u_{1j} \, X_{ij} + u_{0j} + e_{ij}$
- Simulated conditions:
- 1) NG = Number of Groups [30, 50, 100]
- 2) GS = Group Size [5, 30, 50]
- 3) ICC = Intraclass Correlation [.1, .2, .3]
- 1000 simulated data sets in each condition, but residuals U₀ and U₁ have χ₁² distribution

Simulation Design

 1000 simulated data sets in each condition, but residuals U₀ and U₁ have χ₁² distribution

Robust Standard Errors

- At what sample sizes is ML robust?
- Are robust standard errors indeed better?
- Robust standard errors (MLwiN, AML): sandwich estimates or Huber/White estimates
- ML sampling variance: $V_A(\hat{\beta}) = H^{-1}$
- Sandwich sampling variance: $V_{\mathbb{R}}(\hat{\beta}) = H^{-1}CH^{-1}$ **C** based on observed residuals

Simulation Results

- No convergence problems: 27000 admissible solutions
- Regression coefficients no detectable bias
- · Variances almost no bias
 - In condition NG=30, GS=5, ICC=0.1 bias = -0.1%
- Standard errors
 - No effect of ICC
 - For regression coefficients: small negative bias, robust s.e. not better
 - For variances: some large negative biases, robust s.e. better, but not good enough

Simulation Results: Effect of Number of Groups

Actual coverage of nominal 95% C.I.: ML/SW

	∟0	O_0	o_1
NG 30	.9487/.9866*	.6537*/.8128*	.6501*/.8007*
50	.9539/.9903*	.6701*/.8734*	.6471*/.8506*
100	.9534/.9933*	.6659*/.9217*	.6308*/.9059*

- Huge negative bias for 2nd level variance components: standard errors estimated much too small
- Robust standard errors better, but not good enough
 - With 200 groups probably good enough

Simulation Results: Effect of Group Size

Actual coverage of nominal 95% C.I.: ML/SW

 E_0 U_0 U

GS 5 .9373/.9819* .7784*/.9019* .7540*/.8648* 30 .9630/.9937* .6219*/.8582* .6032*/.8500* 50 .9557/.9947* .5893*/.8478* .5708*/.8423*

- Huge negative bias for 2nd level variance components: standard errors estimated much too small
- Robust standard errors better, but not good enough
- Having larger groups makes problem worse

Conclusions: Regression Coefficients

- Point estimates fine in all simulated conditions
- Standard errors fine in all simulated conditions with normality assumption valid
- Standard errors too small with normality assumption violated
 - With NG=100 coverage good
 - · Robust standard errors not better
- Advice: don't worry, be happy

Conclusions: Variance Components

- Point estimates fine in all simulated conditions
- Standard errors reasonable in all simulated conditions with normality assumption valid
- Standard errors much too small with normality assumption violated
 - Robust standard errors definitively better
 - But at NG = 100 not good enough
- Advice: use robust standard errors as diagnostic, not remedy

